IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Avrupa Bilim ve Teknoloji Dergisi
  • Issue:27
  • The Performance of Artificial Neural Network Approaches to Estimate the Nitrate Concentration in Gro...

The Performance of Artificial Neural Network Approaches to Estimate the Nitrate Concentration in Groundwater

Authors : Asli COBAN
Pages : 873-879
Doi:10.31590/ejosat.866497
View : 29 | Download : 16
Publication Date : 2021-11-30
Article Type : Research Paper
Abstract :Su temininde temel kaynaklardan olduğu için yeraltı suyundaki kirlilik konsantrasyonunun tahmini önemlidir. Nitrat (NO3-N) yeraltı suyu kirliliğinde iyi bilinen gösterge parametrelerinden birisidir. Yapay sinir ağları (YSA) geçmiş veriler kullanılarak yeraltı suyundaki nitrat konsantrasyonunu tahmin etmek için kullanılabilir. Bu çalışmada, literatürdeki bir kuyu analizinden türetilen örnek bir veri seti, altı farklı kuyu özelliğine (girdi parametrelerine) göre yeraltı suyunun nitrat konsantrasyonunu (hedef parametre) tahmin etmek için kullanılmıştır. Kuyuların farklı hidrojeolojik parametrelerinin nitrat konsantrasyonu üzerindeki etkisine ilk kez bu çalışmada dikkat çekilmiştir. BPNN ve GRNN olmak üzere iki farklı YSA yaklaşımının performansı, regresyon performansları üzerinden karşılaştırmalı olarak değerlendirilmektedir. YSA modellerinin regresyon sonuçlarına bakıldığında, bu veri seti ile GRNN (R = 0.99) algoritmasının BPNN (R = 0.98) algoritmasından biraz daha iyi çalıştığı sonucuna varılabilir. Korelasyon sonuçları, nitrat kirliliğini tahmin etmek için kuyuların en önemli özelliklerinin sırasıyla kuyu derinliği, su tablasının altındaki derinlik, elek üstü kil ve kuyu ızgarasına derinlik olduğunu göstermektedir. Ayrıca tüm bu özellikler kuyunun nitrat konsantrasyonu ile ters orantılıdır.
Keywords : Yeraltı Suyu, Nitrat Kirliliği, Yapay Sinir Ağı, Regresyon, BPNN, GRNN

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025