IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Avrupa Bilim ve Teknoloji Dergisi
  • Issue:27
  • Sinüs Kosinüs Algoritması ile Çok Katmanlı Algılayıcı Eğitimi

Sinüs Kosinüs Algoritması ile Çok Katmanlı Algılayıcı Eğitimi

Authors : M Evren KIYMAÇ, Yasin KAYA
Pages : 1113-1117
Doi:10.31590/ejosat.994406
View : 19 | Download : 19
Publication Date : 2021-11-30
Article Type : Research Paper
Abstract :Yapay sinir ağlarının (YSA) eğitilmeleri açısından, meta-sezgisel yöntemlerin geleneksel, eğim tabanlı yöntemlere göre üstünlükleri, bilimsel yazındaki çok sayıda çalışma ile gösterilmiştir. Bu çalışmanın amacı, bir YSA türü olan Çok Katmanlı Algılayıcı (ÇKA) eğitimindeki başarım açısından, bir meta-sezgisel en iyileştirme yöntemi olan Sinüs Kosinüs Algoritması (SKA) ile iki başka yöntemin (parçacık sürü en iyileştirmesi (PSEİ) ve yarasa algoritması (YA)) karşılaştırılmasıdır. Bütün yöntemlerin, Kaliforniya Üniversitesi, Irvine, Yapay Öğrenme Kaynağı üzerinden alınan beş hastalık ile ilgili veri kümesinde (göğüs kanseri, diyabet, karaciğer, omurga ve parkinson) ikili sınıflandırmadaki başarım değerlendirmeleri yapılmıştır. Deney sonuçlarında, SKA ile eğitilen ÇKA’lar %97’ye varan yüksek doğruluk oranlarına ulaşmıştır. Yöntem, YA’dan büyük çoğunlukla daha yüksek, PSEİ’den büyük çoğunlukla daha düşük başarım göstermiştir. PSEİ yöntemi genel olarak daha yüksek başarı gösterse de, SKA yöntemi de bir veri kümesinde en yüksek, kalan veri kümelerinin biri dışında hepsinde ikinci en yüksek eğitim başarımını göstermiştir. İncelenen yöntem arama uzaylarında, hem yüksek keşfetme ve yerel en iyiden kaçınma, hem de amaçlanan değerlere yüksek yakınsama hızları göstermektedir. Bu sonuçlar, SKA’nın ÇKA eğitiminde yetkin ve etkili olabildiğini ortaya koymaktadır.
Keywords : Yapay Sinir Ağları, Çok Katmanlı Algılayıcı, Meta sezgisel Yöntemler, Sinüs Kosinüs Algoritması

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025