IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Avrupa Bilim ve Teknoloji Dergisi
  • Issue:28 Special Issue
  • A deep learning approach for detecting pneumonia in chest X-rays

A deep learning approach for detecting pneumonia in chest X-rays

Authors : Muhammet Emin ŞAHİN, Hasan ULUTAŞ, Esra YÜCE
Pages : 562-567
Doi:10.31590/ejosat.1009434
View : 22 | Download : 13
Publication Date : 2021-11-30
Article Type : Research Paper
Abstract :Pnömoni her yıl çok sayıda çocuğun ölümüne neden olmakta ve dünya nüfusunun belli bir oranını oluşturmaktadır. Göğüs röntgenleri öncelikle bu hastalığı teşhis etmek için kullanılır, ancak eğitimli bir radyolog için bile göğüs röntgenlerini yorumlamak kolay değildir. Bu çalışmada, radyologlara karar verme süreçlerinde yardımcı olmak için dijital göğüs röntgeni görüntüleri üzerinde eğitilmiş bir pnömoni tespiti modeli sunulmaktadır. Çalışma, Phyton platformunda son zamanlarda yaygın olarak tercih edilen derin öğrenme modelleri kullanılarak gerçekleştirilmiştir. Bu çalışmada, dört farklı CNN modeli ile pnömoni sınıflandırması için bir derin öğrenme çerçevesi önerilmiştir. Bunlardan üçü önceden eğitilmiş modeller, MobileNet, ResNet ve AlexNet, diğeri ise önerilen CNN modelidir. Bu modeller performanslarına göre birbirleriyle karşılaştırılarak değerlendirilmektedir. Önerilen derin öğrenme çerçevesinin deneysel performansı, kesinlik, duyarlılık ve F1-puanı temelinde değerlendirilir. Modeller sırasıyla %93, %97, %97 ve %86 doğruluk değerlerine ulaşmıştır. Önerilen ResNet modelinin diğerlerine kıyasla en yüksek sonuçları elde ettiği açıktır.
Keywords : ANN, Derin Öğrenme, Python, Zatürre, X Ray

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025