IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Avrupa Bilim ve Teknoloji Dergisi
  • Issue:28 Special Issue
  • Derin Öğrenme Mimarilerini Kullanarak Katarakt Tespiti

Derin Öğrenme Mimarilerini Kullanarak Katarakt Tespiti

Authors : Fatih AĞALDAY, Ahmet ÇINAR
Pages : 1428-1433
Doi:10.31590/ejosat.1012694
View : 33 | Download : 11
Publication Date : 2021-11-30
Article Type : Research Paper
Abstract :İnsanın yaşam kalitesini olumsuz olarak etkileyen görme kayıplarını daha erken bir dönemde teşhis etmek önemlidir. İnsan yaşının ilerlemesi ile birlikte görme bozuklukları ve bazen tamamen görme kaybına neden olmaktadır. Gözün anatomik yapısında bulunan anormallikler göz hastalıklarının erken dönemlerinde göz yapısına ait görsellerle de tespit edilebilmektedir. Katarat dünyada milyonlarca insanı etkileyen görme bozukluğunun en önemli nedenidir. Otomatik tanı sistemleri ile sağlık hizmeti kullanımı hafifleyerek uzmanlara yardımcı olmayı amaçlamaktadır. Bu makalede renkli fundus görüntüler kullanılarak katarat hastalığına otomatik tanı sistemi ele alınmıştır. Katarat hastalığının otomatik tanımlanması için evrişimli sinir ağı (CNN) ve derin artık ağ (DRN) kullanılarak sınıflandırma yöntemi kullanılmıştır. Veri seti 5000 hastanın sağ ve sol gözlerine ait renkli fundus fotoğrafları ve doktorların her bir hastanın sağ ve sol gözüne konulmuş teşhisler için anahtar kelimler ile yapılandırılmış bir veri tabanıdır. Bu veri seti gerçek yaşamda hasta gruplarını temsil etmektedir. Çinli bir şirket olan Shanggong Medical Technology Co., Ltd. Şirketi tarafından farklı hastane ve tıp merkezlerinden elde edilen veriler toplanmıştır. Veri setinde hastalar 8 farklı etikete sınıflandırma yapılmıştır. Renkli fundus görüntüler sayesinde farklı evrelere ait katarat semptomlarına ait özellikler bulunmaktadır. Önerilen otomatik tanı sistemi güncel sınıflandırma sistemlerine oranla daha başarılı olduğu görülmektedir. DRN yönteminin CNN yöntemine göre doğruluk oranına göre daha yüksektir. CNN modelinde doğruluk oranı %89 civarında iken DRN modelinde doğruluk oranı %95 olduğu görülmektedir.
Keywords : Derin Öğrenme, Evrişimsel Sinir Ağları, Derin Kalıntı Ağı, Sınıflandırma, Katarakt

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025