IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Avrupa Bilim ve Teknoloji Dergisi
  • Issue:28 Special Issue
  • Makine Öğrenimi Algoritmaları Kullanarak Kalp Hastalıklarının Tespit Edilmesi

Makine Öğrenimi Algoritmaları Kullanarak Kalp Hastalıklarının Tespit Edilmesi

Authors : Mustafa COŞAR, Emre DENİZ
Pages : 1112-1116
Doi:10.31590/ejosat.1012986
View : 18 | Download : 10
Publication Date : 2021-11-30
Article Type : Research Paper
Abstract :Kardiyovasküler hastalıklar, her yıl tahminen 17.9 milyon can kaybına neden olmaktadır. Toplam ölüm miktarının büyük bir çoğunluğunu oluşturan kalp hastalıkları için erken tanı ve tedaviler önemli bir yer kapsamaktadır. Uzun zamandır tıp alanında gerçekleştirilen çalışmalar, son çeyrek yüzyılda bilgisayar bilimlerinin hızlı yükselişi sayesinde makine öğrenmesi ve yapay zekâ gibi yeni tekniklerle desteklenerek daha başarılı hale getirilmiştir. Bu çalışmada kalp rahatsızlığını tespit etmek için örnek veri seti üzerinde makine öğrenmesi teknikleri uygulanmış ve sonuçlar karşılaştırılmıştır. İlk olarak veri seti analiz edilmiştir. Hangi verilerin kalp rahatsızlığına dair işaretlerde bulunabileceği belirtilmiştir. Ardından üç farklı makine öğrenmesi yöntemleri kullanılarak örnek bir model oluşturulmuş ve kalp rahatsızlığı olan bireyler tespit edilmiştir. Elde edilen sonuçlar karşılaştırıldığında, Random Forest algoritması ile %88’lik bir doğruluk oranı ile daha başarılı olduğu gözlemlenmiştir. Bunu sırasıyla %85’lik bir doğrulukla ile Lojistik Regresyon ve %70’lik bir doğruluk ile kNN algoritması takip etmiştir. Bulgular, kalp rahatsızlığının temel birkaç veri ile kolayca tespit edilebileceğini göstermektedir.
Keywords : Makine öğrenmesi, Veri madenciliği, Kalp hastalığı tespit etme, Medikal veri analizi

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025