IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Avrupa Bilim ve Teknoloji Dergisi
  • Issue:28 Special Issue
  • Turkish Traffic Sign Recognition: Comparison of Training Step Numbers and Lighting Conditions

Turkish Traffic Sign Recognition: Comparison of Training Step Numbers and Lighting Conditions

Authors : Kaan KOCAKANAT, Tacha SERİF
Pages : 1469-1475
Doi:10.31590/ejosat.1015972
View : 15 | Download : 16
Publication Date : 2021-11-30
Article Type : Research Paper
Abstract :Yollardaki araç sayısının her geçen gün artmasıyla birlikte trafik işaretleri her geçen gün daha da önem kazanmaktadır. Trafik işaretleri basit ve anlaşılması kolay olmasına rağmen, sıkışık trafikte sürücüler bunları gözden kaçırabilir. Milisaniyelerin bile kazaları önlemede büyük fark yarattığını göz önünde bulundurarak, sürücüye trafik işaretleri konusunda yardımcı olacak bir sistemin olmasının büyük bir fayda sağlayacağı oldukça açıktır. Bunun için bir trafik işareti tanıma sisteminin geliştirilmesi gerekmektedir. Bu makalede, Daha Hızlı R-CNN algoritması kullanılarak bir Türk trafik işareti tespit ve tanıma sisteminin geliştirilmesi amaçlanmaktadır. Önerilen çözüm, TensorFlow çerçevesi ile nesne algılama modelini eğitmek için Daha Hızlı R-CNN Inception-v2-COCO'yu kullanır. Modelin eğitilmesi için 54 sınıf ve 10842 adet Türk trafik işareti görüntüsünü içeren yeni bir veri seti oluşturulmuştur. Modelin eğitimi sırasıyla 51.217 ve 200.000 eğitim adım numaraları ile iki kez gerçekleştirilir. Daha sonra bu iki model kullanılarak gündüz ve gece çekilen 10 adet Türk trafik işareti görüntüsü tespit edilmeye çalışılmıştır. Sonuçlar, önerilen modellerin 51.217 eğitim adımıyla eğitildiğinde ortalama hassasiyetin %67,2 ve ortalama hatırlamanın %78,3 olduğunu göstermektedir; Öte yandan, model 200.000 eğitim adımıyla eğitildiğinde ortalama hassasiyet %76'ya ve ortalama hatırlamanın da %82,8'e yükselir.
Keywords : Türk Trafik İşaretleri, Trafik İşareti Tanıma, Daha Hızlı R CNN, Nesne Algılama, TensorFlow

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025