IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Avrupa Bilim ve Teknoloji Dergisi
  • Issue:34 Special Issue
  • Computer Aided Deep Learning Based Assessment of Stroke From Brain Radiological CT Images

Computer Aided Deep Learning Based Assessment of Stroke From Brain Radiological CT Images

Authors : Ali Berkan URAL
Pages : 42-52
Doi:10.31590/ejosat.1063356
View : 23 | Download : 16
Publication Date : 2022-03-31
Article Type : Research Paper
Abstract :Çalışmanın amacı, MATLAB 2019b arayüzünde Derin Öğrenme modelleri ile inme hastalarının beyin BT'lerinden Görüntü İşleme kullanarak anormal alan(lar)ı tespit etmek ve hastalarda beyin dokularındaki inme değişikliklerini doğru bir şekilde değerlendirmektir. TOBB ETÜ ve Yıldırım Beyazıt Üniversitesi Hastanelerinden 25-75 yaş aralığında 1000 hasta (500 inme şüphelisi, 500 sağlıklı katılımcı) etik kurul sertifikasına göre seçilmiştir. Bu çalışma için hastaların görüntü verilerinden doğruluğu artırmak ve fazlalığı ortadan kaldırmak için sadece lateral ve 4. ventrikül BT görüntüleri kullanıldı. İlk olarak bu görüntüler Görüntü İşleme yöntemleri (Görüntü Toplama, Ön İşleme, Eşikleme, Segmentasyon, Morfolojik İşlemler vb.) ile işlenmiştir. Bu yöntemlerden sonra elde edilen lateral ventrikül görüntüsü 6 spesifik alana bölündü ve 4. ventrikül görüntüsü otomatik bilgisayarlı Alberta Stroke Skorlama gibi sırasıyla 14 spesifik alana bölündü. 1000 görüntü için, belirli sınıf adlarıyla (sağlıklı ve felçli olarak) toplam 20x1000=20000 adet BT alt görüntüsü elde edilmiş ve Yapay Zeka (AI) ve Derin Öğrenme (DL) modellerinin (Levenberg ile optimize edilmiş YSA) girdisi olarak kullanılmıştır. Marquardt yöntemi ve KSA). Bu yaklaşım, doktorlara sonuçlarını bir karar destek sistemi ile desteklemeleri, teşhis süresini hızlandırmaları ve olası yanlış teşhis oranlarını azaltmaları için önemli bir şans verebilir.
Keywords : Yapay Zeka, Derin Öğrenme, İnme Tanılama, Bilgisayar Destekli Tanı, İnme Önleme

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025