IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Avrupa Bilim ve Teknoloji Dergisi
  • Issue:34 Special Issue
  • Evaluation of Oversampling Methods (OVER, SMOTE, and ROSE) in Classifying Soil Liquefaction Dataset ...

Evaluation of Oversampling Methods (OVER, SMOTE, and ROSE) in Classifying Soil Liquefaction Dataset based on SVM, RF, and Naïve Bayes

Authors : Selçuk DEMİR, Emrehan Kutluğ ŞAHİN
Pages : 142-147
Doi:10.31590/ejosat.1077867
View : 26 | Download : 17
Publication Date : 2022-03-31
Article Type : Research Paper
Abstract :Dengesiz sınıf veri kümeleri, mühendislik, tıp alanı, finans sektörü ve diğerleri dahil olmak üzere gerçek dünya uygulamalarında oldukça yaygındır. Makine öğrenimi (ML) tabanlı tahmin modelleri, farklı problemlerin çözümü için çeşitli algoritmaların uygulanabilirliğini başarıyla göstermiştir. Ancak sınıf dengesizliği durumu göz önüne alındığında zemin sıvılaşması sorununa yönelik uygulamaları sınırlıdır. Bu çalışma, zemin sıvılaşması için farklı eğitim örneği boyutlarına sahip rastgele orman (RF), destek vektör makinesi (SVM) ve naive bayes (NB) algoritmalarının tahmin sonuçlarını sunmaktadır. Ayrıca, basit aşırı örnekleme (OVER), rastgele aşırı örnekleme örnekleri (ROSE) ve sentetik azınlık aşırı örnekleme tekniğinin (SMOTE) gibi aşırı örnekleme yöntemlerinin sınıflandırma algoritmalarının tahmin performansı üzerindeki etkisi araştırılmıştır. Performans sonuçları, Accuracy, Kappa, Precision, Recall ve F-measure gibi metrikler aracılığıyla değerlendirilmiştir. Sonuçlar, modelleme aşamasından önce dengesiz veriler üzerinde aşırı örnekleme yöntemlerinin uygulanmasının etkili olduğu göstermiştir. Ayrıca, bütün aşırı örnekleme yöntemlerinin, sınıflandırma modellerinin genel performanslarını geliştirmeye yardımcı olduğu görülmüştür. SMOTE yönteminin diğer dikkate alınan aşırı örnekleme yöntemlerinden biraz daha iyi performans gösterdiği gözlemlenmiştir. Bununla beraber, bütün algoritmalar SMOTE algoritması ile eğitildiğinde, SVM modeli RF ve NB modellerine kıyasla daha iyi performans sergilemiştir.
Keywords : Sıvılaşma Tahmini, Naïve Bayes, Dengesiz Veri Seti, RF, SVM, Aşırı Örnekleme

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025