IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Avrupa Bilim ve Teknoloji Dergisi
  • Issue:34 Special Issue
  • Öksürük Sesi Kayıtlarından Spektral Özellikler ile Otomatik COVID-19 Tespiti

Öksürük Sesi Kayıtlarından Spektral Özellikler ile Otomatik COVID-19 Tespiti

Authors : Semiye DEMİRCAN
Pages : 492-495
Doi:10.31590/ejosat.1083052
View : 16 | Download : 9
Publication Date : 2022-03-31
Article Type : Research Paper
Abstract :COVID-19 pandemisi son iki yıldır dünyada hızla yayılmış ve bu alanda yapılan çalışmalar da artmıştır. COVID-19 olan hastaların, hasta olmayanlardan ayırt edilmesi de pandemideki en önemli sorunlardan bir tanesidir. Gerek hastalığın erken teşhisi gerekse hasta olmayanlara bulaşma riski açısından COVID-19’un otomatik tespiti oldukça önem arz etmektedir. Hastalığın teşhisinde farklı semptomların görülebilmesi ve hatta hiç semptom görülmeden bile oluşabilmesi teşhisi çok daha zor hale getirmiştir. Bu durum hastalığın teşhisi konusunda yapılan çalışmaları arttırmıştır. Öksürük ses kayıtları gibi solunum kayıtlarında var olan önemli özellikler kullanılarak teşhis yapılabilmesi de bu uygulamalardan bir tanesidir. Bu çalışmada öksürük ses kayıtları kullanılarak otomatik COVID-19 hastalık tespiti yapılmıştır. “COVID-19 Positive and Negative Patients' Cough Recordings” (HIMANSHU) veri seti kullanılarak gerçekleştirilen çalışmada ilk olarak ses dosyalarından Mel-Frekansı Kepstrum Katsayıları (MFCC) çıkarılmıştır. Farklı sayıda olan MFCC öznitelikleri istatistiksel değerler kullanılarak eşit boyutlu hale getirilmiştir. MFCC yöntemi ile elde edilen spektral özellikler 8, 16, 32, 64 tane olacak şekilde dört farklı uzunlukta katsayılar çıkarılmıştır. Son olarak makine öğrenmesi algoritmalarından Yapay Sinir Ağları (YSA), Naive Bayes (NB), K-en Yakın Komşu Algoritması (kNN), Rastgele Orman (RO) algoritmaları kullanılarak hastalık teşhisi yapılmıştır. Yapılan çalışmada COVID veya COVID-DEGİL şeklinde 2 sınıf kullanılmıştır. Uygulama on çapraz doğrulama yöntemi ile çalıştırılmıştır. Çalışma sonunda en yüksek sınıflandırma başarası kNN algoritması ile % 99.39 olarak gerçekleştirilmiştir.
Keywords : Covid 19 Tespiti, Öksürük Sesi, MFCC, YSA

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025