IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • El-Cezeri
  • Volume:11 Issue:1
  • Artificial Intelligence Supported Detection Systems on Embedded Devices

Artificial Intelligence Supported Detection Systems on Embedded Devices

Authors : Feyza Alnıacik, Furkan Yıldırım, Serkan Gönen, Birkan Alhan, Mehmet Ali Barışkan, Hasan Hüseyin Sayan, Ercan Nurcan Yılmaz
Pages : 109-119
Doi:10.31202/ecjse.1312555
View : 86 | Download : 149
Publication Date : 2024-03-13
Article Type : Research Paper
Abstract :With the transition to the information society, all areas of our lives are rapidly shifting to the digital environment. From education to health, from citizenship procedures to social life, all areas of our lives are interacting in the digital cyber environment. In this process, smart cities, smart networks, and smart factories, especially critical infrastructures required for social life, have become open to the intranet and then to the internet for reasons such as efficient efficiency, speed, remote maintenance, and maintenance. Along with this process, these systems have faced new threat surfaces. One of the components that play an essential role in the operation of these systems is embedded systems. These systems contribute significantly to the effective operation of essential infrastructures. However, any interruption in these systems can lead to significant negative consequences, including economic damage and human life. Although there are many studies on the functioning of embedded systems, there are not enough studies on the cyber security analysis of these systems. For this reason, in this study, attack and detection analyses for embedded systems have been carried out on the test environment created using real systems. The study aims to detect passive attack, which is more difficult to detect than active attacks on the system, by using artificial intelligence algorithms. The analysis results have shown that the attack has been detected in a high ratio. It has been evaluated that the study will significantly contribute to other studies on the security of embedded systems.
Keywords : Embedded System Security, Vulnerability Analysis, Artificial Intelligence, Cyber Security

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025