IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi
  • Volume:23 Issue:2
  • Siber saldırı tespiti için makine öğrenmesi yöntemlerinin performanslarının incelenmesi

Siber saldırı tespiti için makine öğrenmesi yöntemlerinin performanslarının incelenmesi

Authors : Fatih DEMİR
Pages : 782-791
Doi:10.25092/baunfbed.876338
View : 12 | Download : 11
Publication Date : 2021-07-04
Article Type : Research Paper
Abstract :İnternet tabanlı cihazların kullanımının artması, siber ortamda güvenlik sorunlarına yol açmaktadır. Kötü amaçlı yazılımlar, sistemlerin işleyişini bozabilir ve sistemlerdeki güvenlik açıkları nedeniyle veri gizliliğini tehlikeye atabilir. Siber saldırıları belirlemek ve sınıflandırmak için Saldırı Tespit Sistemleri (STS) geliştirilmektedir. Yapay zeka tabanlı yöntemler, STS sistemlerini iyileştirmek için daha sık kullanılmaktadır. Bu çalışmada, STS sistemlerinin geliştirilmesinde yaygın olarak kullanılan ISCX-2012 veri setinin kullanıldığı literatür çalışmaları gözden geçirilmiştir. Ayrıca bu veri seti kullanılarak makine öğrenmesi tabanlı güçlü bir yaklaşım ile siber saldırılar %100 doğrulukla tespit edilmiştir. Önerilen yöntemin sınıflandırma doğruluğu performansını artırmak için öznitelik ve hiperparametre seçme algoritmaları kullanılmıştır. Önerilen yaklaşımın yapay zeka temelli STS sistemleri geliştirmek için faydalı olacağı düşünülmektedir.
Keywords : Siber Saldırı, Saldırı Tespit Sistemleri, Makine Öğrenmesi

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025