IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Abant Sosyal Bilimler Dergisi
  • Volume:23 Issue:2
  • Twitter`da Makine Öğrenmesi Yöntemleriyle Sahte Haber Tespiti

Twitter`da Makine Öğrenmesi Yöntemleriyle Sahte Haber Tespiti

Authors : Mehmet KAYAKUŞ, Fatma YİĞİT AÇIKGÖZ
Pages : 1017-1027
Doi:10.11616/asbi.1266179
View : 69 | Download : 54
Publication Date : 2023-07-31
Article Type : Research Paper
Abstract :Gelişen teknolojik olanaklara bağlı olarak iletişim alanında da önemli değişiklikler yaşanmıştır. İnternetin yaygınlaşması ile geleneksel iletişim araçlarının yerini bilgiye ulaşmanın hızlı ve kolay olduğu yeni teknolojik yöntemler almıştır. Bu teknolojik yeniliklerin başında da kullanıcıların interaktif iletişimine olanak sağlayan sosyal medya platformları gelmektedir. Kullanıcıların hizmetine sunulan birçok sosyal ağ arasında Twitter, yazılı ve görsel habercilik için uygun bir platform olması nedeniyle hem gündemi takip etmek isteyen kullanıcılar hem de haberini hızla hedef kitleye ulaştırmak isteyen haber kaynakları tarafından yoğun olarak tercih edilmektedir. Haberin insanlar arasında hızla yayılması ve etkileşim sağlamasına olanak sunan bu platformun avantajları yanında bazı dezavantajları da bulunmaktadır. Haberin kontrol edilememesi nedeniyle sahte haberlerin dolaşıma sokulması ve bunların engellenme güçlüğü bunlardan bazılarıdır. Bu çalışmada Twitter’da sahte haberleri tespit etmek için makine öğrenmesi yöntemleri kullanılmıştır. Örnek bir konu seçilmiş ve bununla ilgili yapılmış sahte ve gerçek haberler tespit edilmiştir. Çalışmada karar ağaçları ve Naive Bayes yöntemleri kullanılmıştır. Çalışmanın sonuçları karışıklık matrisi ve F1 skoru yöntemine göre karşılaştırılmıştır. Karar ağaçları yönteminin F1 skoru 0,829, Naive Bayes yönteminin ise 0,883 olmuştur. Bu sonuçlara göre Naive Bayes yönteminin Twitter’da sahte haber tespiti için daha başarılı bir yöntem olduğu görülmüştür. Bu çalışma ile Twitter’da sahte haberlerin tespiti yapılabilecek ve önlemler alınabilecektir.
Keywords : Sahte haber, Twitter, makine öğrenmesi, metin madenciliği

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025