IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Medical Records
  • Volume:4 Issue:2
  • Artificial Intelligence-based Colon Cancer Prediction by Identifying Genomic Biomarkers

Artificial Intelligence-based Colon Cancer Prediction by Identifying Genomic Biomarkers

Authors : Nur PAKSOY, Fatma Hilal YAĞIN
Pages : 196-202
Doi:10.37990/medr.1077024
View : 20 | Download : 9
Publication Date : 2022-05-01
Article Type : Research Paper
Abstract :Amaç: Kolon kanseri dünya genelinde en sık görülen üçüncü kanser türüdür. Kötü prognoz ve net olmayan preoperatif evreleme nedeniyle, hastalığın tanı ve tedavisinde genetik biyobelirteçler daha önemli hale gelmiştir. Bu çalışmada kolon kanseri için biyobelirteç adayı genlerin belirlenmesi ve bu genlere dayalı olarak kolon kanserini başarılı bir şekilde tahmin eden bir modelin geliştirilmesi amaçlanmıştır. Materyal ve Metot: Çalışmada, Princeton Üniversitesi Gen Ekspresyon Projesi ile elde edilen ve figshare veri tabanında paylaşılan 62 farklı örnekten insert ignore into journalissuearticles values(22 sağlıklı ve 40 tümör dokusu); 2000 genin ekspresyon düzeylerini içeren bir veri seti kullanıldı. Veriler ortalama ± standart sapma olarak özetlendi. İstatistiksel analizler için bağımsız örneklerde T-testi kullanıldı. Veri setindeki sınıf dengesizliği sorununu ortadan kaldırmak için öznitelik seçiminden önce SMOTE yöntemi uygulandı. Kolon kanseri ile ilişkili olabilecek en önemli 13 gen, LASSO öznitelik seçim yöntemi ile seçildi. Modelleme aşamasında Rastgele Orman insert ignore into journalissuearticles values(RF);, Karar Ağacı insert ignore into journalissuearticles values(DT); ve Gauss naive Bayes yöntemleri kullanıldı. Bulgular: LASSO tarafından seçilen 13 genin tümü, normal ve tümör numuneleri arasında istatistiksel olarak anlamlı bir farka sahipti. RF ile oluşturulan modelde doğruluk, seçicilik, f1-skor, duyarlılık, negatif ve pozitif prediktif değerlerinin tümü 1 olarak hesaplanmıştır. DT ve Gaussian Naive Bayes ile karşılaştırıldığında RF yöntemi en yüksek performansı vermiştir. Sonuç: Çalışmada kolon kanserinin genomik biyobelirteçlerini belirledik ve hastalığı yüksek performanslı bir model ile sınıflandırdık. Elde ettiğimiz sonuçlara göre, yüksek boyutlu mikrodizi verilerinin modellenmesinde LASSO+RF yaklaşımının kullanılması önerilebilir.
Keywords : Kolon kanseri, mikrodizi, genomik, LASSO, rastgele orman, karar ağacı, gaussian naive bayes

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025