IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi
  • Volume:10 Issue:1
  • XGBoost Algoritması ile İkili Parçacık Sürü Optimizasyonu Öznitelik Seçme Tabanlı Jar Kötü Amaçlı Ya...

XGBoost Algoritması ile İkili Parçacık Sürü Optimizasyonu Öznitelik Seçme Tabanlı Jar Kötü Amaçlı Yazılımlarının Tespiti

Authors : Mahmut TOKMAK
Pages : 140-152
Doi:10.35193/bseufbd.1194460
View : 53 | Download : 63
Publication Date : 2023-05-31
Article Type : Research Paper
Abstract :Java dilini kullanan kötü amaçlı yazılımlarla gerçekleştirilen saldırılar, geçtiğimiz yıllarda hızla artış göstermeye başlamıştır. Bu artışlarla birlikte kötü amaçlı yazılımların kişilere ve kurumlara verebileceği zararlar araştırmacıları otomatik algılama sistemlerini geliştirerek güçlendirmek için farklı makine öğrenme teknikleri geliştirmeye ve test etmeye yöneltmiştir. Bu çalışmada kötü amaçlı Jar dosyalarının tespiti için ikili parçacık sürü optimizasyonu tabanlı öznitelik seçimi ve XGBoost algoritması ile sınıflandırma yapan hibrit bir sistem önerilmiştir. İkili parçacık sürü optimizasyonu algoritmasında minimizasyon sağlanırken kullanılan uygunluk fonksiyonunda rastgele orman algoritması kullanılmıştır. Öznitelik seçimi ile sınıflandırma algoritmasının üzerine düşen hesaplama yükü azaltılarak hız ve performans artırımı hedeflenmiştir. Önerilen modelde 10 kat çapraz doğrulama yapılarak eğitim ve testler gerçekleştirilmiştir. XGBoost algoritması ile yapılan tespit mekanizmasında doğruluk, kesinlik, F1-Skoru, duyarlılık metrikleri ile kurulan modelin performansı ortaya konulmuştur. Önerilen modelin performansının değerlendirilmesi amacıyla AdaBoost, Gradient Boosting, Destek Vektör Makineleri, Yapay Sinir Ağları, Naive Bayes yöntemleri ile testler yapılmış ve sonuçlar karşılaştırılmıştır. Deneysel sonuçlar, önerilen ikili parçacık sürü optimizasyonu tabanlı öznitelik seçimi ve XGBoost algoritması ile sınıflandırma yapan hibrit modelin kötü amaçlı Jar yazılım tespitinde %98.04 doğruluk oranı ile karşılaştırılan modellere göre daha başarılı olduğunu göstermiştir.
Keywords : Jar Malware Tespiti, XGBoost, İkili Parçacık Sürü Optimizasyonu, Öznitelik Seçme

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025