IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Bilişim Teknolojileri Dergisi
  • Volume:9 Issue:1
  • Firma Başarısızlığı Tahminlemesi: Makine Öğrenmesine Dayalı Bir Uygulama

Firma Başarısızlığı Tahminlemesi: Makine Öğrenmesine Dayalı Bir Uygulama

Authors : Hamit ERDAL, Tevfik Şükrü YAPRAKLI
Pages : 21-0
View : 22 | Download : 20
Publication Date : 2016-01-21
Article Type : Other Papers
Abstract :Firma risk profilinin belirlenmesi, literatürde firma başarısızlığı kavramlarıyla incelenmektedir. Bu konu üzerinde, özellikle 1929 büyük buhranı sonrasında çok önemli çalışmalar yapılmıştır. Başlarda, riskli ve başarılı firmaların finansal göstergeleri arasındaki farklılıklara yoğunlaşılırken, özellikle bilişim teknolojilerindeki gelişimlere paralel olarak son yıllarda bilişim sistemleri firma başarısızlığı tahminlemesinde en önemli bileşenlerinden biri olmuştur. Özellikle, makine öğrenmesi yöntemlerinin bu alanda kullanılmaya başlanmasıyla firma başarısızlığının tahmin edilmesinde önemli yol kat edilmiştir. Bu çalışmada Erzurum ilinde 38 yıldır faaliyet gösteren inşaat malzemeleri toptancısı bir firmanın müşterilerinin vadeli borçlarını ödeme/ödememe riskleri firma başarısızlığı kapsamında ele alınmış ve firma başarısızlığının tahmininde uygun bir makine öğrenmesi yöntemi araştırılmıştır. Probleme etki eden değişkenler Temel Bileşenler Analizi (TBA) ile ortaya konulmuştur. Son yıllarda makine öğrenmesinde oldukça gelişmekte olan Yapay Sinir Ağları (YSA) ve Destek Vektör Makineleri (DVM)’nin TBA yöntemiyle beraber kullanımıyla oluşturulan hibrit modellerin bu tahminde uygulanabilirliği incelenmiş ve tahmin performansları yalın YSA ve DVM’ler ile karşılaştırılmıştır. TBA ile bütünleşik olarak kullanılan hibrit modellerin tahmin başarısının yalın YSA ve DVM’lere oranla daha tatmin edici sonuçlar verdiği görülmüştür. Özellikle TBA-DVM modelinin firma başarısızlığı tahminlemesinde alternatif bir yöntem olarak etkin bir şekilde kullanılabileceği sonucuna varılmıştır.
Keywords : Firma Başarısızlığı, Makine Öğrenmes, Sınıflandırma, Temel Bileşenler Analizi, Yapay Sinir Ağları, Destek Vektör Makineleri

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025