IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Bilişim Teknolojileri Dergisi
  • Volume:7 Issue:1
  • Breiman Algoritması Kullanılarak Homojen Alt Grupların Belirlenmesi: Bir Uygulama

Breiman Algoritması Kullanılarak Homojen Alt Grupların Belirlenmesi: Bir Uygulama

Authors : Özge AKŞEHİRLİ, Handan ANKARALI, Şengül CANGÜR, Mehmet Ali SUNGUR
Pages : 19-24
View : 21 | Download : 14
Publication Date : 2014-04-16
Article Type : Research Paper
Abstract :– Breiman, birçok verinin birbirine yakın olarak toplandığı “yüksek yoğunluklu” alanları bularak verilerin kümelenebileceğini söylemiştir. Bu çalışmada, Breiman’ın kümeleme algoritmasının işleyiş adımları tanıtılarak bir veri seti üzerinde uygulama adımlarının gösterilmesi ve sonuçlarının yorumlanması amaçlanmıştır. Uygulama bölümünde, hastaneye gece yeme sendromu şikâyetiyle başvuran 433 kişiye ilişkin sosyo-demografik ve klinik özellikler kullanılmıştır. Veri setinde olabilecek kümelerin ortaya konmasında, CART algoritmasından yararlanılmıştır. Elde edilen optimum ağaçta toplam 31 karar noktası bulunmuş ancak bunların 14’ ünde yer alan deneklerin kendi içinde kümelenme gösterdiği belirlenmiştir. Çalışmaya alınan kişilerin 350’si oluşturulan 14 küme içine girmiş ve bunların 273 (%78)’ü klinik olarak gece yeme alışkanlığı yoktur tanısı almıştır. Elde edilen 14 kümenin 12’sinde yer alan kişilerin ağırlıklı olarak gece yeme alışkanlığı yok tanısı alanlardan oluştuğu ve bu sonuca göre, bu veri setinden elde edilen kümelerin, genel olarak gece yeme alışkanlığı olmayan bireyleri ayırt edebildiği söylenebilir. Sonuç olarak, hedef veya bağımlı değişkenin bilinmediği durumlarda, veri setinde var olan homojen alt grupların belirlenmesinde, danışmansız öğrenme yöntemlerinden biri olan kümeleme analizinin uygulanması için değişkenlerin dağılım şekli ve tipinden etkilenmeyen Breiman algoritması etkin bir şekilde kullanılabilir.
Keywords : Veri madenciliği, danışmansız öğrenme, kümeleme analizi, Breiman algoritması, CART

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025