IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Bilişim Teknolojileri Dergisi
  • Volume:15 Issue:1
  • Comparison of U-Net Based Models for Human Embryo Segmentation

Comparison of U-Net Based Models for Human Embryo Segmentation

Authors : Nefise UYSAL, Tahir Koray YOZGATLI, Ecem Nur YILDIZCAN, Emre KAR, Murat GEZER, Ercan BAŞTU
Pages : 35-44
Doi:10.17671/gazibtd.949430
View : 20 | Download : 15
Publication Date : 2022-01-31
Article Type : Research Paper
Abstract :Tüp bebek tedavisi sırasında üretilen insan embriyolarının kalitesi, geleneksel olarak klinik embriyologlar tarafından derecelendirilir ve bu süreç zaman alıcı olup insan hatasına açıktır. Hızlandırılmış mikroskopi (TLM) yöntemi ile alınan görüntüleri derecelendirmek için yapay zeka yöntemleri kullanılabilir. TLM görüntülerinde embriyonun arka plandan segmentasyonu, arka planın derecelendirme algoritmalarını yanlış yönlendirebilecek çeşitli artefaktlara sahip olması nedeniyle embriyo kalite değerlendirmesi için önemli bir adımdır. Bu çalışmada, derin öğrenmeye dayalı otomatikleştirilmiş 5. gün insan embriyosu (blastosist) görüntü segmentasyon yöntemlerinin karşılaştırmalı bir analizi yapılmıştır. U-Net ve üç varyantından oluşan dört tam evrişimli derin model, iki gradyan iniş tabanlı optimizasyon algoritmasının ve iki kayıp fonksiyonunun kombinasyonu kullanılarak oluşturulmuş ve önerilen modelimiz ile karşılaştırılmıştır. Test setindeki deneysel sonuçlar, optimizasyon fonksiyonu olarak Adam ve kayıp fonksiyonu olarak ise Dice kullanan özelleştirilmiş Dilated Inception U-Net modelinin, sırasıyla %98.68, %97.52, %99.20 ve %98.52'lik Dice katsayısı, Jaccard benzerlik katsayısı, doğruluk ve kesinlik ile diğer U-Net tabanlı modellerden daha iyi performans gösterdiğini doğrulamıştır.
Keywords : U Net, derin öğrenme, evrişimli sinir ağları, in vitro fertilizasyon IVF, insan embriyosu, segmentasyon

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025