IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Bitlis Eren Üniversitesi Fen Bilimleri Dergisi
  • Volume:10 Issue:4
  • Akciğer Histopatoloji Görüntülerinden Çıkarılan Derin Özellikleri Kullanan Makine Öğrenmesi Sınıflan...

Akciğer Histopatoloji Görüntülerinden Çıkarılan Derin Özellikleri Kullanan Makine Öğrenmesi Sınıflandırıcıları ile Akciğer Kanseri Tespiti

Authors : Emine UÇAR
Pages : 1552-1562
Doi:10.17798/bitlisfen.983291
View : 17 | Download : 10
Publication Date : 2021-12-31
Article Type : Research Paper
Abstract :Kanser dünyada ve ülkemizde gözlenme sıklığı giderek artan sağlık sorunlarının başında gelmekte ve her yıl milyonlarca insan kanser nedeniyle hayatını kaybetmektedir. Histopatolojik tanı, kanser türünün teşhisinde ve tedavi stratejisinin belirlenmesinde önemli bir rol oynamaktadır. Bu çalışmada akciğer histopatoloji görüntüleri kullanılarak derin öğrenme yöntemlerine dayalı bir otomatik model geliştirilmesi amaçlanmıştır. Geliştirilen modelde öncelikle DenseNet201, MobileNetV2, VGG16, NASNetLarge, Xception, InceptionV3, VGG19, EfficientNetB7 ve ResNet152 gibi önceden eğitilmiş derin öğrenme mimarileri kullanılarak özellik çıkarımı gerçekleştirilmiş ve daha sonra Adaboost, Çok katmanlı algılayıcı, Rastgele orman ve Destek vektör makinesi gibi makine öğrenmesi yöntemleri ile sınıflandırılmıştır. Ardından sınıflandırıcılardan elde edilen değerlendirme sonuçlarına göre en iyi performansa sahip ilk üç derin öznitelik birleştirilerek makine öğrenmesi sınıflandırıcılarına girdi olarak kullanılmıştır. Deneysel sonuçlar en iyi özniteliklerin birlikte kullanılmasının sınıflandırma başarısına olumlu yönde katkı sağladığını göstermiştir. Test veri setinden elde edilen sonuçlar, önerilen hibrit yaklaşımın %97.22 ortalama sınıflandırma başarısı ile akciğer histopatoloji görüntülerinden adenokarsinom, skuamöz hücreli karsinom ve normal dokuların otomatik sınıflandırmasında etkili olduğunu göstermiştir.
Keywords : Akciğer kanseri tespiti, sınıflandırma, derin öğrenme, makine öğrenmesi

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025