IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Bitlis Eren Üniversitesi Fen Bilimleri Dergisi
  • Volume:11 Issue:1
  • Mamografik Kitle Sınıfının Makine Öğrenmesi Teknikleri ile Tespiti

Mamografik Kitle Sınıfının Makine Öğrenmesi Teknikleri ile Tespiti

Authors : Ömer ERİŞ, Seval BULUT ERİŞ, Mehmet Recep BOZKURT
Pages : 164-175
Doi:10.17798/bitlisfen.1003938
View : 21 | Download : 7
Publication Date : 2022-03-24
Article Type : Research Paper
Abstract :Meme Kanseri, dünyada kadınlar arasında ölüme neden olabilen kanser tiplerinin en sık görülenlerinden biridir. Günümüzde meme kanseri teşhisinde farklı görüntüleme yöntemleri kullanılmakla birlikte bu yöntemler zaman zaman gereksiz biyopsiye yönlendirebilmektedir. Bu çalışmada, Makine Öğrenmesi Tekniklerinden, Karar Ağaçları ve Yapay Sinir Ağları yöntemleri kullanılarak mamografik kitlenin sınıfı, hastaya ve kitleye ait özelliklerin değerinden tespit edilmiştir. Karar Ağaçlarında, GINI algoritması kullanılmış ve RapidMiner programından yararlanılmıştır. Yapay Sinir Ağlarında, ileri beslemeli geri yayılımlı ağ modeli MATLAB’de yazılan program aracılığı ile kullanılmıştır. Bu çalışmada kullanılan veri seti, Erlangen-Nuremberg Üniversitesi, Radyoloji Enstitüsü, Jinekolojik Radyoloji bölümünden elde edilen 961 örnekten oluşmaktadır. Her örnek için 5 adet özellik mevcuttur. Bu özellikler, BI-RADS (Meme Görüntüleme Raporlama ve Veri Sistemleri) değerlendirmesi, Yaş, Kitle Şekli, Kitlenin Kenar Boşluğu ve Kitlenin Yoğunluğu bilgilerini içermektedir. Yaklaşımımız, mamografide tespit edilen kitleleri iyi huylu ve kötü huylu olmak üzere iki farklı sınıfa ayırmaktadır. Her iki yöntemin başarı analizleri ve karşılaştırılması, hata matrisindeki değerler kullanılarak doğruluk, duyarlılık, kesinlik, seçicilik ve F-skor değerlerine bakılarak yapılmıştır.
Keywords : GINI Algoritması, Karar Ağaçları, Yapay Sinir Ağları, İleri Beslemeli Geri Yayılımlı Ağ, Mamografi, Hata Matrisi

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025