IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Bitlis Eren Üniversitesi Fen Bilimleri Dergisi
  • Volume:11 Issue:4
  • The Separation of glaucoma and non-glaucoma fundus images using EfficientNet-B0

The Separation of glaucoma and non-glaucoma fundus images using EfficientNet-B0

Authors : Buket TOPTAŞ, Davut HANBAY
Pages : 1084-1092
Doi:10.17798/bitlisfen.1174512
View : 16 | Download : 12
Publication Date : 2022-12-31
Article Type : Research Paper
Abstract :Glaucoma is an eye disease that causes vision loss. This disease progresses silently without symptoms. Therefore, it is a difficult disease to detect. If glaucoma is detected before it progresses to advanced stages, vision loss can be prevented. Computer-aided diagnosis systems are preferred to understand whether the fundus image contains glaucoma. These systems provide accurate classification of healthy and glaucoma images. In this article, a system to separate images of a fundus dataset as glaucoma or healthy is proposed. The EfficientNet B0 model, which is a deep learning model, is used in the proposed system. The input of this deep network model is designed as six layers. The experimental results of the designed model were obtained on the publicly available ACRIMA dataset images. In the end, the average accuracy rate is determined as 0.9775.
Keywords : EfficientNet, Glaucoma, Fundus Image

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025