IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Bitlis Eren Üniversitesi Fen Bilimleri Dergisi
  • Volume:13 Issue:3
  • Enhancing Radar Image Classification with Autoencoder-CNN Hybrid System

Enhancing Radar Image Classification with Autoencoder-CNN Hybrid System

Authors : Kürşad Uçar
Pages : 578-586
Doi:10.17798/bitlisfen.1457065
View : 91 | Download : 91
Publication Date : 2024-09-26
Article Type : Research Paper
Abstract :The tracking, analysis, and classification of human movements can be crucial, particularly in areas such as elderly care, healthcare, and infant care. Typically, such tracking is done remotely with cameras. However, radar systems have emerged as significant methods and tools for these tasks due to their advantages such as privacy, wireless operation, and the ability to work through walls. By converting reflected radar signals from targets into images, human activities can be classified using powerful classification tools like deep learning. In this study, range-Doppler images of behind-the-wall human movements obtained with a radar system consisting of one transmitter and four receiver antennas were classified. Since the data collected from the four receiver antennas are in different positions, the collected reflection signals also differ. The signals collected with the range-time matrix content were divided into positive and negative parts, resulting in eight images from the four antennas. Instead of using all the data in CNN training, the images were first subjected to a reconstruction process with an autoencoder to reduce differences. As a result, it was observed that reconstructing the images with an autoencoder before classification with CNN increased the classification success. In conclusion, it was observed that the classification success of radar images can be increased by using a hybrid system with an autoencoder to reconstruct the images before classification with CNN.
Keywords : Autoencoder Reconstruction, Behind the Wall Monitoring, CNN Classification, Human Movement Tracking, Radar Systems

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025