IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Bor Dergisi
  • Volume:9 Issue:4
  • Development of PCL/PVA/PCL scaffold for local delivery of calcium fructoborate for bone tissue engin...

Development of PCL/PVA/PCL scaffold for local delivery of calcium fructoborate for bone tissue engineering

Authors : Ali Deniz Dalgıç
Pages : 143-152
Doi:10.30728/boron.1549809
View : 77 | Download : 86
Publication Date : 2024-12-31
Article Type : Research Paper
Abstract :Calcium fructoborate (CaFB) has gathered attention due to its boron and calcium content, both of which are known to support bone health, deposition and regeneration. Previous studies have shown that CaFB has a positive effect on bone health and has been proven to promote bone-like properties. In light of this information, a local CaFB delivering scaffold could improve bone regeneration in cases of bone tissue loss. This study aimed to design a layer-by-layer polymeric sponge capable of achieving controlled local delivery of CaFB to improve bone tissue healing. The dose-dependent effect of CaFB on the cell viability of the Saos-2 cell line was investigated in vitro. Layer by-layer structure of the polymeric scaffold supported controlled release of CaFB, with 33.9±7.4% released after 7 days of incubation. CaFB at 31.25 μg/mL concentration was able to improve Saos-2 cell viability up to 174.7±24.1% and 127.7±8.7% after 1 and 4 days of incubation. After 7 days of incubation CaFB treatment at concentrations of 250, 125, 62.5 and 31.25 μg/mL improved cell viability up to 194.3±47.7, 155.3±17.7, 149.4±5.4 and 132.5±13.3%. The polycaprolactone/polyvinyl alcohol/polycaprolactonen(PCL/PVA/PCL) scaffold supported the viability of cells for 7 days and was shown to be biocompatible. The results of this study showed that CaFB is a potential compound thatncan be locally delivered within a scaffold system to improve bone tissue regeneration.
Keywords : Bor, Kalsiyum Fruktoborat, Kemik Doku Mühendisliği, polikaprolakton, polivinil alkol

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025