IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Celal Bayar Üniversitesi Fen Bilimleri Dergisi
  • Volume:14 Issue:4
  • Comparative Performance Analysis of Techniques for Automatic Drug Review Classification

Comparative Performance Analysis of Techniques for Automatic Drug Review Classification

Authors : Alper Kürşat UYSAL
Pages : 485-490
Doi:10.18466/cbayarfbe.481096
View : 20 | Download : 10
Publication Date : 2018-12-28
Article Type : Research Paper
Abstract :This study analyses the effectiveness of six text feature selection methods for automatic classification of drug reviews written in English using two different widely-known classifiers namely Support Vector Machines (SVM) and naïve Bayes (NB). In the study, a recently published public dataset namely Druglib including drug reviews in English was utilized in the experiments. For evaluation, Micro-F1 and Macro-F1 success measures were used. Also, 3-fold cross-validation is preferred to perform a fair evaluation. The feature selection methods used in the study are Distinguishing Feature Selector (DFS), Information Gain (IG), chi-square (CHI2), Discriminative Features Selection (DFSS), Improved Comprehensive Measurement Feature Selection (ICMFS), and Relative Discrimination Criterion (RDC). However, experiments were performed using two settings in which stemming was applied and not applied. Experiments indicated that ICMFS feature selection method is generally superior to the other feature selection methods according to the overall highest Micro-F1 and Macro-F1 scores achieved on drug reviews. While the highest Micro-F1 score was achieved with the combination of NB classifier and ICMFS feature selection method, the highest Macro-F1 score was achieved with the combination of NB classifier and DFSS feature selection method. The highest Micro-F1 and Macro-F1 scores were achieved for the cases that stemming algorithm was not applied.
Keywords : Pattern recognition, text classification, drug reviews, feature selection

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025