IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Celal Bayar Üniversitesi Fen Bilimleri Dergisi
  • Volume:19 Issue:3
  • A Neural Network Model for Estimation of Maximum Next Day Energy Generation Capacity of a Hydropower...

A Neural Network Model for Estimation of Maximum Next Day Energy Generation Capacity of a Hydropower Station: A Case Study from Turkey

Authors : Serkan İNAL, Sibel AKKAYA OY, Ali Ekber ÖZDEMİR
Pages : 197-204
Doi:10.18466/cbayarfbe.1218381
View : 63 | Download : 40
Publication Date : 2023-09-30
Article Type : Research Paper
Abstract :Energy planning in a hydro power station insert ignore into journalissuearticles values(HPS); is essential for reservoir management, and to ensure efficient operation and financial usage. For robust energy planning, operators should estimate next day energy generation capacity correctly. This paper investigates use of a robust neural network model to estimate maximum next day energy generation capacity by using reservoir inflow rates for the previous four days, the current level of water in the reservoir, and the weather forecast for the Darıca-2 HPS in Ordu Province, Turkey. The generated energy in an HPS is directly dependent on the level of stored water in the reservoir, which depends on reservoir inflow. As the level of water in a reservoir varies during the year depending on climatic conditions, it is important to be able to estimate energy generation in an HPS to operate the HPS most effectively. This paper uses reservoir inflow data that has been collected daily during 2020 for the training phase of a neural network. The neural network is tested using a data set that has been collected daily during the first four months of 2021. Used neural network structure is called as LWNRBF insert ignore into journalissuearticles values(Linear Weighted Normalized Radial Basis Function); network, which is developed form of RBF network. In order to be able to be created valid model, LWNRBF network is trained with a two-pass hybrid training algorithm. After the training and testing stages, average training and testing error percentages have been obtained as 0.0012% and -0.0044% respectively.
Keywords : hydro electric power generation, hydropower generation, neural network, reservoir inflow, renewable energy sources

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025