IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Adıyaman Üniversitesi Fen Bilimleri Dergisi
  • Volume:14 Issue:2
  • Tumor Detection by Classification of Brain MRI Images Using the Vision Transformers

Tumor Detection by Classification of Brain MRI Images Using the Vision Transformers

Authors : Uğur Demiroğlu
Pages : 140-156
Doi:10.37094/adyujsci.1572289
View : 50 | Download : 112
Publication Date : 2024-12-31
Article Type : Research Paper
Abstract :The interplay between applied mathematics and artificial intelligence is pivotal for advancing both fields. AI fundamentally relies on statistical and mathematical techniques to derive models from data, thus enabling computers to improve their performance over time. Classification of brain MRI images for tumor detection has improved significantly with the advent of machine learning and deep learning techniques. Classical classifiers such as Support Vector Machines (SVM), Tree, and k-Nearest Neighbors (k-NN) have been widely used in conjunction with feature extraction methods to improve the accuracy of tumor detection in MRI scans. Recent studies have shown that classical classifiers can effectively analyze features extracted from MRI images, which can lead to improved diagnostic capabilities. Feature extraction is a critical step in the classification process. Classification of brain MRI images using Vision Transformers (ViTs) represents a significant advancement in medical imaging and tumor detection. ViTs leverage the transformer architecture, which is highly successful in natural language processing, to effectively process visual data. This approach allows for capturing long-range dependencies within images and enhances the ability of the model to distinguish complex patterns associated with brain tumors. Recent studies have demonstrated the effectiveness of ViTs in various classification tasks, including medical imaging. In our study, the classification accuracy of the dataset from the ViTs network was 78.26%. In order to increase tumor detection performance, features of the ViTs network were extracted and given to classical classifiers, and 81.9% accuracy was achieved in Tree classifier. As a result, classification of brain MRI images using ViTs represents a new approach with the strengths of deep learning and traditional machine learning methods, namely feature extraction and classification in classical classifiers.
Keywords : Beyin MRI, Tümör Tespiti, Sınıflandırma, Vision Transformers, Uygulamalı Matematik.

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025