IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi
  • Volume:36 Issue:4
  • Machine Learning Approach for Predicting Employee Attrition and Factors Leading to Attrition

Machine Learning Approach for Predicting Employee Attrition and Factors Leading to Attrition

Authors : İrem ERSÖZ KAYA, Oya KORKMAZ
Pages : 913-928
Doi:10.21605/cukurovaumfd.1040487
View : 20 | Download : 13
Publication Date : 2021-12-29
Article Type : Research Paper
Abstract :İşletmeler için oldukça önemli olan insan kaynağının yıpranmasının ve yıpranmanın doğal sonucu olan işten ayrılmanın önüne geçmek amacıyla yapılan bu çalışmada, yıpranmaya neden olan faktörler tahmine dayalı analitik tekniklerinden biri olan makine öğrenmesi yöntemleri kullanılarak belirlenmeye çalışılmıştır. Analiz için örnek veri seti IBM şirketi Watson Analytics programı kapsamında sunulan bir veri tabanından alınmıştır. Veri seti, 1470 adet çalışanın 30 farklı özniteliğini içermektedir. Çalışmada, tahmin başarısını değerlendirmek amacıyla yedi farklı makine öğrenmesi algoritması kullanılmıştır. Yıpranmaya neden olan faktörlerin tespitinde ise kazanç oranı yaklaşımı tercih edilmiştir. Çalışmanın kilit noktası, bootstrap tekniği ile yeniden örnekleme yapılarak sınıfların örnek sayılarının dengelenmesidir. Sonuç olarak, yeniden örnekleme ile makine öğrenmesi yöntemlerinin anlamlı sonuçlar vermesi sağlanmış ve tahmin doğruluk performansı, kör test yapılmasına rağmen %80’ler seviyesine ulaşmıştır. Kazanç oranı ile yapılan öncelik sıralamasında ilk 20’de yer alan özelliğin, yıpranmaya neden olan öncelikli faktörler olabileceği belirlenmiştir.
Keywords : Çalışan yıpranması, Tahmin analitikleri, Makine öğrenmesi, Öznitelik seçimi, Veri madenciliği

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025