IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Dicle Üniversitesi Mühendislik Fakültesi Dergisi
  • Volume:5 Issue:2
  • Parmak hareketlerine ilişkin ECoG örüntülerin AR tabanlı öznitelikler ile sınıflandırılması...

Parmak hareketlerine ilişkin ECoG örüntülerin AR tabanlı öznitelikler ile sınıflandırılması

Authors : Mehmet Siraç ÖZERDEM, Kerim KARADAĞ
Pages : 89-97
View : 19 | Download : 7
Publication Date : 2014-12-01
Article Type : Other Papers
Abstract :Bu çalışmasında, ECoG kayıtları kullanılarak parmak hareketlerinin sınıflandırılması amaçlanmıştır. Çalışmada BCI Competition IV yarışmasında sunulan Data set IV isimli veri kümesi kullanılmıştır. Veri kümesinde üç epilepsi hastasına ilişkin ECoG kayıtları ve parmak hareketlerini gösteren elektronik eldiven kayıtları yer almaktadır. Eldiven kayıtları referans alınarak, parmak hareketlerinin yer aldığı ECoG bölütleri belirlenmiştir. Farklı uzunluklardaki belirlenen bölütlerin öznitelik vektörleri, özbağlanımlı (AR) modelleme ile elde edilmiştir. Öznitelik vektörleri kNN ve DVM yöntemleri ile sınıflandırılmıştır. Sınıflandırıcı açısından bakıldığında, DVM yönteminin kNN sınıflandırıcısına göre daha iyi bir performans sergilediği görülmektedir. DVM ile yapılan sınıflandırılma işleminde, her üç denek için iki parmağın sınıflandırma başarı ortalaması %87.35, üç parmağın sınıflandırma başarı ortalaması %66.97, dört parmağın sınıflandırma başarı ortalaması %50.06 ve tüm parmakların sınıflandırma başarı ortalaması %34.41 olarak elde edilmiştir. kNN ile yapılan sınıflandırılma işleminde, her üç denek için iki parmağın sınıflandırma başarı ortalaması %75.35, üç parmağın sınıflandırma başarı ortalaması %55.50, dört parmağın sınıflandırma başarı ortalaması %39.00 ve tüm parmakların sınıflandırma başarı ortalaması %31.90 olarak elde edilmiştir. AR katsayıları açısından bakıldığında, çoğunlukla m=3 katsayı ile en yüksek başarımların elde edildiği görülmüştür. Denekler açısından bakıldığında, tüm sınıflandırma işlemlerinde denek 1’in en yüksek sınıflandırma performansına sahip olduğu görülmektedir. Denek 2 ve denek 3’ün sınıflandırılacak parmak sayısına göre farklı performanslar sergiledikleri görülmektedir. Sınıflandırılan parmak sayısı açısından bakıldığında, ayrıştırılacak parmak sayısının artması ile başarı oranı dramatik olarak düştüğü görülmektedir. Sınıf sayısının artması ile hem DVM hem de kNN sınıflandırıcı performanslarının oldukça düşük seviyelerde yer aldığı görülmektedir.
Keywords : ECoG, Parmak hareketleri, özbağlanımlı modelleme, DVM, kNN, Sınıflandırma

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025