IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Dicle Üniversitesi Mühendislik Fakültesi Dergisi
  • Volume:13 Issue:3
  • Gerçek Hayat Verileriyle Makine Öğrenmesi Algoritmalarına Dayalı Otobüs Durak Süresi Tahmini

Gerçek Hayat Verileriyle Makine Öğrenmesi Algoritmalarına Dayalı Otobüs Durak Süresi Tahmini

Authors : Kevser ŞAHİNBAŞ
Pages : 421-428
Doi:10.24012/dumf.1120379
View : 22 | Download : 11
Publication Date : 2022-09-30
Article Type : Research Paper
Abstract :Toplu taşıma sistemleri, gelişmekte olan ülkelerde ve nüfus yoğunluğunun yüksek olduğu bölgelerde büyük bir önem arz etmektedir. Yüksek popülasyona sahip şehirlerde kent içi aktif ulaşım süreçlerinin ve buna yönelik ihtiyaçların giderek yoğunlaştığı gözlemlenmektedir. Bu gereksinimden doğan araç sayısı fazlalığı ve yoğun trafik, büyük bir zaman dilimini kapsayarak günlük yaşantımızın önemli bir parçası haline gelmiştir. Bu sebeple ulaşım sistemleri yönetimi, toplu taşımacılık planlaması, planlamaların sürekli revize halinde olması ve kontrolü, kalabalık kentlerdeki günlük hayat akışında en önemli ihtiyaçlardan biridir. Bu çalışma, karayolu toplu taşımada kilit nokta olan otobüs verilerine dayanmaktadır. Çalışmanın amacı, İstanbul’da belirli bir hatta yapılan seferlerin yolculuk süre verilerinin analizi, duraklar arası sürenin ve durağa varış saati verilerinin analiz edilmesi ve gelecek günlere yönelik tahmin yapılmasıdır. Çalışma sırasında analiz edilen 522B hattı gidiş yönü verilerin tamamı gerçek verilerdir. Bu güzergaha ait veri seti 2021 yılının Temmuz ve Ağustos ayları bazında incelenmiştir. Makine öğrenmesi algoritmalarından Yapay Sinir Ağları insert ignore into journalissuearticles values(YSA); ve Destek Vektör Regresyon insert ignore into journalissuearticles values(SVR); yöntemlerinin, çeşitli trafik koşulları altında tahminler gerçekleştirirken oldukça rekabetçi olduğu ortaya çıkmaktadır. Karşılaştırmalı çalışmalar, YSA`nın daha doğru tahmin sonuçları sağladığını ve bir duraktan diğer durağa geçme süresi dağılımındaki belirsizlikleri daha etkin bir şekilde tahmin etme eğiliminde olduğunu göstermektedir.
Keywords : tahmin, otobüs varış süresi, toplu taşıma, veri yönetimi, ANN, SVR

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025