- Dicle Üniversitesi Mühendislik Fakültesi Dergisi
- Volume:14 Issue:1
- İnsansız hava aracından çekilen videolar kullanılarak derin öğrenme yaklaşımı ile nesne tespiti...
İnsansız hava aracından çekilen videolar kullanılarak derin öğrenme yaklaşımı ile nesne tespiti
Authors : Muhammet Ali ARSERİM, Ayşan USTA
Pages : 9-15
Doi:10.24012/dumf.1191160
View : 145 | Download : 177
Publication Date : 2023-03-23
Article Type : Research Paper
Abstract :Günümüzde, İnsansız Hava Araçlarıinsert ignore into journalissuearticles values(İHA); sınır güvenliği, sahil güvenliği, savunma, saldırı başta olmak üzere arama kurtarma, zirai ilaçlama, yangın söndürme gibi geniş bir kullanım alanına sahiptir. Bununla beraber İHA’nın bazı görevleri otonom bir şekilde yerine getirebilmesi ise bilgisayarlı görü sisteminin buna entegresi ile olur. Bu alandaki uygulamalarından biri olan havadan nesne tespiti uygulamaları, uzaklık, yakınlık kavramlarına bağlı olarak farklı boyutlardaki nesneleri tespit edememe, yavaş tespit, yanlış tahminleme gibi çeşitli hatalar içerebilir. Derin Öğrenmeinsert ignore into journalissuearticles values(DÖ); uygulamaları ile bu hataları en aza indrilebilir. Bu çalışmada VRAT[1] video setinden alınan görüntülerle YOLOv3 DÖ ağı eğitilmiş ve daha sonra DJI Mavic 2 Zoom İHA kamerasından elde edilen görüntülerle tekrar eğitim yapılarak videodaki araçların ve yayaların tespiti sağlanmıştır. Eğitim ve test süreci Google Colab Tesla T4 GPU makinesinde gerçekleştirilmiştir. Modelin performansı ilk ve ikinci eğitim için Loss, mAP 2.345, %79 ve 1.171, %70.09 olarak bulunmuştur.Keywords : İHA, YoloV3, Darknet 53