IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Dicle Üniversitesi Mühendislik Fakültesi Dergisi
  • Volume:14 Issue:1
  • A k-mer based metaheuristic approach for detecting COVID-19 variants

A k-mer based metaheuristic approach for detecting COVID-19 variants

Authors : Hilal ARSLAN
Pages : 17-26
Doi:10.24012/dumf.1195600
View : 78 | Download : 107
Publication Date : 2023-03-23
Article Type : Research Paper
Abstract :Severe acute respiratory syndrome coronavirus 2 insert ignore into journalissuearticles values(SARS-CoV-2); belongs to coronaviridae family and a change in the genetic sequence of SARS-CoV-2 is named as a mutation that causes to variants of SARS-CoV-2. In this paper, we propose a novel and efficient method to predict SARS-CoV-2 variants of concern from whole human genome sequences. In this method, we describe 16 dinucleotide and 64 trinucleotide features to differentiate SARS-CoV-2 variants of concern. The efficacy of the proposed features is proved by using four classifiers, k-nearest neighbor, support vector machines, multilayer perceptron, and random forest. The proposed method is evaluated on the dataset including 223,326 complete human genome sequences including recently designated variants of concern, Alpha, Beta, Gamma, Delta, and Omicron variants. Experimental results present that overall accuracy for detecting SARS-CoV-2 variants of concern remarkably increases when trinucleotide features rather than dinucleotide features are used. Furthermore, we use the whale optimization algorithm, which is a state-of-the-art method for reducing the number of features and choosing the most relevant features. We select 44 trinucleotide features out of 64 to differentiate SARS-CoV-2 variants with acceptable accuracy as a result of the whale optimization method. Experimental results indicate that the SVM classifier with selected features achieves about 99% accuracy, sensitivity, specificity, precision on average. The proposed method presents an admirable performance for detecting SARS-CoV-2 variants.
Keywords : COVID 19, SARS CoV 2, Classifiers, Feature Selection, Machine Learning

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025