IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Dicle Üniversitesi Mühendislik Fakültesi Dergisi
  • Volume:14 Issue:3
  • Yağış-Akış İlişkisinin GEP ve ANFIS İle Modellenmesi

Yağış-Akış İlişkisinin GEP ve ANFIS İle Modellenmesi

Authors : Yunus Yaman, Fevzi Önen
Pages : 489-498
Doi:10.24012/dumf.1297714
View : 131 | Download : 151
Publication Date : 2023-09-30
Article Type : Research Paper
Abstract :Yağış-akış ilişkisinin doğru bir şekilde modellenmesi, su kaynaklarının yönetimi ve su taşkınlarının kontrolü gibi hidrolojik uygulamalar için hayati önem taşımaktadır. Ancak hidrolojik sistemlerin karmaşıklığı ve nonlineer özellikleri nedeniyle, yağış-akış ilişkisi gibi olayları tanımlamak için hala birçok model geliştirilmektedir. Özellikle son yıllarda küresel ısınma ve küresel iklim değişimi gibi etmenler, yağış-akış ilişkisini belirlemeyi daha da önemli hale getirmiştir. Bu nedenle, yapay zeka teknikleri gibi modern yaklaşımların kullanımı giderek artmaktadır. Bu çalışmada, havza yağış-akış modellemesi için iki farklı yapay zeka tabanlı yöntem olan Genetik İfadeli Programlama (GEP) ve Uyarlanabilir Sinirsel-Bulanık Çıkarım Sistemi (ANFIS) kullanılarak, tahmin edilen akış değerleri gözlenen akış değerleri ile karşılaştırılmıştır. Girdi parametreleri olarak, uydu verilerinden elde edilen 4km x 4km çözünürlüklü yağış verisi kullanılmıştır. Bu yağış verisi, havza için günlük ortalama yağış yüksekliği olarak elde edilmiştir. Akım verisi olarak, Berta Suyu Havzası çıkışındaki EİE-2334 nolu akım gözlem istasyonunun (AGİ) günlük akış verileri kullanılmıştır. Akım verileri, Q(t-1), Q(t-2), Q(t-3), Q(t-4) ve yağış verileri olan P(t), P(t-1), P(t-2), P(t-3) gibi çeşitli girdi senaryoları oluşturulmuş ve çıkış olarak Q(t) ile eşleştirilmiştir. Modellerin performansı, determinasyon katsayısı (R2) ve ortalama karesel hatanın kökü (KOKH) gibi istatistiksel ölçütler kullanılarak değerlendirilmiştir. Yapılan çalışmada, ANFIS ve GEP yöntemlerinden elde edilen sonuçların birbirine yakın olduğu tespit edilmiştir. Berta Suyu Alt Havzası için en yüksek R2=0,988 ve en düşük KOKH=4,770 değerini veren modelin ANFIS-K1 olduğu görülmüştür. Bu sonuçlar, yapay zeka tekniklerinin yağış-akış ilişkisini belirlemede etkili bir araç olduğunu göstermektedir.
Keywords : Yapay Zekâ, Yağış Akış, GEP, ANFIS

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025