IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Dicle Üniversitesi Mühendislik Fakültesi Dergisi
  • Cilt: 15 Sayı: 4
  • Long-Term Prediction of Coronary Artery Disease via Ensemble Machine Learning Algorithms

Long-Term Prediction of Coronary Artery Disease via Ensemble Machine Learning Algorithms

Authors : Şehmus Aslan
Pages : 827-837
Doi:10.24012/dumf.1531523
View : 112 | Download : 118
Publication Date : 2024-12-23
Article Type : Research Paper
Abstract :Coronary artery disease (CAD) is the leading cause of death worldwide, necessitating early detection methods that are non-invasive, cost-effective, and reliable. In this study, the effectiveness of various machine learning (ML) models in predicting CAD was evaluated, with a focus on addressing class imbalance using the Synthetic Minority Oversampling Technique (SMOTE). The Framingham CAD dataset was utilized, and SMOTE was applied with different k-values to balance the data, examining the impact on prediction performance. Eight significant features—age, diaBP, glucose, heart rate, sysBP, totChol, cigsPerDay, and BMI—were determined during preprocessing and used for further analysis. Among the models tested, the StackingC classifier demonstrated superior performance, achieving an accuracy of 95.81%, sensitivity of 95.9%, specificity of 95.7%, and an AUROC of 99.2% for k=1. These findings highlight the potential of the StackingC model as a robust tool for CAD prediction, offering a promising non-invasive method for early diagnosis.
Keywords : Makine öğrenmesi, koroner arter hastalığı tahmini, sınıf dengesizliği, SMOTE, stackingC sınıflandırıcı

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025