IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Dicle Üniversitesi Mühendislik Fakültesi Dergisi
  • Cilt: 15 Sayı: 4
  • A Novel DNA Classification Experiment: Spatial Transcriptomics analysis for human Monkeypox DNA-Moti...

A Novel DNA Classification Experiment: Spatial Transcriptomics analysis for human Monkeypox DNA-Motifs with Kolmogorov–Arnold Networks

Authors : Selçuk Yazar
Pages : 839-851
Doi:10.24012/dumf.1537079
View : 60 | Download : 111
Publication Date : 2024-12-23
Article Type : Research Paper
Abstract :Spatial Transcriptomics(ST) has emerged as a powerful tool for understanding gene expression patterns across different regions of a tissue or organism. It is crucial for disease research and developing new therapies. It allows for the measurement of gene expression across specific, localized areas of a tissue slide, though it does so with limited throughput. Yet, the data produced by ST technologies are characteristically noisy, high-dimensional, sparse, and multi-modal, encompassing elements like histological images and count matrices. Existing methods for analyzing ST data, which often rely on traditional statistical or machine learning techniques, have proven inadequate in many cases due to challenges like scale, multi-modality, and the inherent limitations of spatially-resolved data, including spatial resolution, sensitivity, and gene coverage. To address these specific challenges, researchers have turned to deep learning-based models. In this study, we present a novel approach to transcriptomics analysis using Kolmogorov-Arnold Networks (KANs), a state-of-the-art deep learning model to predict regional origin of monkeypox transcriptomic sample. By leveraging the ability of KANs to learn and represent complex, non-linear functions, we aim to uncover intricate spatial patterns of gene expression and gain insights into the underlying biological processes. Study’s analysis focuses on two distinct regions, America and Asia, and employs a KAN-based classifier. The results demonstrate the promising performance of KANs in this context, with a precision of 0.45 and a recall of 0.93 for the America region, indicating a strong ability to correctly identify samples from this region. Findings indicate that predicting the regional transcriptome of monkeypox from DNA motifs could facilitate image-based screening for phylogenetic analyses.
Keywords : Mekânsal Transkriptomik, Kolmogorov-Arnold Ağları, Derin Öğrenme, Gen Örüntüleri, Bölgesel Sınıflandırma

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025