IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Dergisi
  • Volume:16 Issue:48
  • BİYOMEDİKAL VERİ KÜMELERİ İLE MAKİNE ÖĞRENMESİ SINIFLANDIRMA ALGORİTMALARININ İSTATİSTİKSEL OLARAK K...

BİYOMEDİKAL VERİ KÜMELERİ İLE MAKİNE ÖĞRENMESİ SINIFLANDIRMA ALGORİTMALARININ İSTATİSTİKSEL OLARAK KARŞILAŞTIRILMASI

Authors : Murat KARAKOYUN, Mehmet HACIBEYOĞLU
Pages : 30-42
View : 15 | Download : 7
Publication Date : 2014-09-01
Article Type : Research Paper
Abstract :Günümüzde bilişim teknolojileri hemen hemen her alanda kullanılmaktadır. En çok kullanılan alanlardan bir tanesi de sağlık sektörüdür. Dijital hastane sistemlerinin kullanılmasıyla birlikte hasta verileri artık bilgisayar ortamında saklanmakta ve böylelikle biyomedikal veri kümeleri oluşmaktadır. Boyut olarak çok büyük olan bu veri kümelerinin bir insan tarafından analiz edilmesi ve yorumlanması çok zordur. Bunun için bilgisayar mühendisliği çalışma alanlarından biri olan makine öğrenmesi algoritmaları kullanılır. Bu çalışmada 6 tane makine öğrenmesi algoritmalarının başarımları 9 farklı biyomedikal veri kümesi üzerinde test edilmiştir ve elde edilen sonuçlar istatistiksel olarak karşılaştırılmıştır. Deneysel ve istatistiksel sonuçlar birlikte incelediğinde küçük ve orta büyüklükteki biyomedikal veri kümeleri için Yapay Sinir Ağları algoritması sınıflandırma başarımı açısından ve Ken Yakın Komşu algoritması ise çalışma zamanı açısından daha başarılı olmuştur. Bu çalışmanın bir bölümü ASYU 2014/İzmir sempozyumunda bildiri olarak sunulmuştur
Keywords : Makine Öğrenmesi, Sınıflandırma, Biyomedikal

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025