IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Düzce Üniversitesi Bilim ve Teknoloji Dergisi
  • Volume:10 Issue:3
  • Öğrencilerin Dersteki Niteliklerinin Makine Öğrenmesi Teknikleri Kullanılarak Sınıflandırılması...

Öğrencilerin Dersteki Niteliklerinin Makine Öğrenmesi Teknikleri Kullanılarak Sınıflandırılması

Authors : Ercüment GÜVENÇ, Murat SAKAL, Gürcan ÇETİN, Osman ÖZKARACA
Pages : 1359-1371
Doi:10.29130/dubited.1017202
View : 23 | Download : 11
Publication Date : 2022-07-31
Article Type : Research Paper
Abstract :Öğrencilerin akademik başarılarını tahmin etme ve eksik oldukları alanları giderme anlamında yapılan bu çalışma, Bilişim Sistemleri Mühendisliğine Giriş dersi alan öğrencilere uygulanmıştır. Bu öğrencilerin dönem başı bilgisayar bilgi düzeylerinin, dönem sonunda elde ettikleri başarı notu üzerine etkisi makine öğrenmesi yöntemleri uygulanarak eğitim kalitesinin arttırılması amaçlanmıştır. Çalışmaya katılan öğrencilere ait veriseti eğitim ve test verisi olmak üzere ayrıldığında veri yetersizliğinden dolayı anlamsız sonuçlar ortaya çıkmıştır. Bu nedenle makine öğrenmesi algoritmalarının başarımını arttırmak için “Sentetik Azınlık Örneklem Arttırma Yöntemi (SMOTE)” çalışmada veri çoğaltma tekniği olarak seçilmiştir. Veri çoğaltma işlemi yapıldıktan sonra, veri seti üzerinde uygulanan K-en yakın komşu (KNN), Destek vektör makinesi (DVM), Lojistik Regresyon (LR), Rasgele Orman (RF), Karar ağaçları (DT) ve Naive Bayes makine öğrenmesi yöntemlerine göre en iyi sonucu en yakın komşuluk- KNN algoritması ile oluşturulmuş model vermiştir. Bu model, eğitim setinden bağımsız 300 öğrenciden oluşan test verisinin sınıflandırma işlemini, %97.66 doğrulukla tahmin etmiştir. 
Keywords : Makine öğrenmesi, Sınıflandırma, Başarı tahmini, En yakın komşuluk algoritması, Sentetik azınlık örneklem arttırma yöntemi

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025