IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi
  • Volume:24 Issue:3
  • Stance Detection on Short Turkish Text: A Case Study of Russia-Ukraine War

Stance Detection on Short Turkish Text: A Case Study of Russia-Ukraine War

Authors : Serdar Arslan, Eray Fırat
Pages : 602-619
Doi:10.35414/akufemubid.1377465
View : 94 | Download : 78
Publication Date : 2024-06-27
Article Type : Research Paper
Abstract :In recent years, social media has emerged as a crucial source of information for gauging public sentiment on a variety of topics. As a result, the need for automated data extraction from these platforms has grown. Stance detection, a subtask in natural language processing, plays a pivotal role in this process by automatically determining users\' opinions regarding specific subjects, events, or individuals. To address this, we developed a labeled Turkish dataset focused on determining users\' stances on the Russia-Ukraine War using social media content. The dataset, comprising 8215 tweets from Twitter, was meticulously cleaned and annotated for two key targets: Russia and Ukraine. We evaluated several machine learning methods, including Support Vector Machines, Random Forest, k-Nearest Neighbor, XGBoost, Long-Short Term Memory (LSTM), and Gated Recurrent Unit (GRU), with word embeddings from GloVe and FastText. Additionally, we incorporated a transformer-based approach for stance detection. Given the dataset\'s imbalance between targets, we applied undersampling and oversampling techniques alongside these algorithms. Our experiment results indicate that BERT-based models outperformed all other methods, with LSTM and GRU producing similarly strong outcomes. The newly established Turkish corpus stands as a valuable resource in this field, with potential for future use in conjunction with transformer-based approaches. In summary, this study advances the field of stance detection research in the context of Turkish text.
Keywords : Duruş tespiti, Doğal dil işleme, BERT, Derin Öğrenme

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025