IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi
  • Volume:2 Issue:2
  • ÇOKLU DOĞRUSAL REGRESYONDA MODEL SEÇİMİNDE GENELLEŞTİRİLMİŞ TOPLAMSAL MODELLERİN KULLANIMI...

ÇOKLU DOĞRUSAL REGRESYONDA MODEL SEÇİMİNDE GENELLEŞTİRİLMİŞ TOPLAMSAL MODELLERİN KULLANIMI

Authors : Talat ŞENEL, Mehmet CENGİZ, Nurettin SAVAŞ, Yüksel TERZİ
Pages : 217-227
View : 18 | Download : 12
Publication Date : 2014-03-11
Article Type : Research Paper
Abstract :Çoklu doğrusal regresyon yaygın olarak kullanılan istatistiksel yöntemlerden birisidir. Varsayımlar sağlandığında oldukça güçlü bir araçtır. Bu varsayımlardan biri de bağımlı değişkenler ile açıklayıcı değişkenler arasındaki ilişkinin doğrusal, polinomial veya üstel gibi bir bilinen matematiksel fonksiyona sahip olmasıdır. Ancak çoğu uygulamalarda tanımlı böyle bir fonksiyon bulunamayabilir veya bu ilişki kolayca tanımlanamayabilir. Genelleştirilmiş Toplamsal Modeller (GAM), var olan ilişkileri ortaya çıkarmak için tanımlı bir fonksiyonla, parametrik olmayan bir düzleştiriciyi yer değiştirerek bu varsayımı esnetir. GAM çoklu regresyonda model seçiminde de kullanılabilir. Bu çalışma da, çoklu doğrusal regresyon da model seçiminde GAM’ın kullanımı üzerine odaklanılmaktadır.
Keywords : Multiple linear regression, Generalized Additive model, Cubic splayn, Air pollution

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025