IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi
  • Volume:15 Issue:1
  • Artificial Neural Network based MPPT Algorithm with Boost Converter topology for Stand-Alone PV Syst...

Artificial Neural Network based MPPT Algorithm with Boost Converter topology for Stand-Alone PV System

Authors : Mehmet YILMAZ, Muhammedfatih CORAPSİZ
Pages : 242-257
Doi:10.18185/erzifbed.1002823
View : 16 | Download : 10
Publication Date : 2022-03-27
Article Type : Research Paper
Abstract :Teknolojinin gelişmesine paralel olarak artan enerji ihtiyacı ve kaynakların tükenmesi, alternatif enerji kaynaklarının önemini artırmıştır. Güneş enerjisi sistemleri hareketli parça olmaması, güvenilir olması ve gürültüsüz çalışması gibi avantajları nedeniyle sıklıkla tercih edilmektedir. Güneş enerjisinden elektrik üretimi, istenilen gerilim ve akım değerlerine bağlı olarak fotovoltaik (PV) panellerin seri veya paralel bağlanması ile elde edilmektedir. PV panellerden elde edilen enerjiyi arzu edilen şebeke değerlerine dönüştürmek amacıyla DC-DC dönüştürücüler kullanılmaktadır. PV panellerden mümkün olan en yüksek verimi elde etmek için maksimum güç noktası izleme (MPPT) algoritmaları kullanılmaktadır. MPPT algoritmaları DC-DC dönüştürücülerin görev periyodu (D) oranını kontrol edip maksimum enerji elde etmektedirler. Bu çalışmada, Yapay Sinir Ağı (YSA) tabanlı bir MPPT algoritması önerilmiştir İlk olarak PV panel girişindeki sıcaklık ve ışınım verileri Levenberg-Marquardt algoritması kullanılarak eğitilmiştir Sonuç olarak, bir referans voltajı üretilir ve PV panel tarafından üretilen voltaj ile karşılaştırılarak MPPT gerçekleştirilmektedir. Önerilen algoritmanın performansını değerlendirmek için geleneksel MPPT yöntemlerinden Değiştir & Gözle (P&O) ve Artırılmış iletkenlik (INC) ile karşılaştırılmıştır. Benzetim çalışmaları sonucunda YSA tabanlı MPPT’nin çeşitli ışınım ve sıcaklık koşulları için P&O ve INC algoritmalarından daha başarılı olduğu gözlemlenmiştir.
Keywords : Yapay sinir ağı, maksimum güç noktası takibi, DC DC dönüştürücü, artırılmış iletkenlik algoritması, değiştir gözle algoritması

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025