IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi
  • Volume:15 Issue:Special Issue:I - 4th International Conference on Advanced Engineering Technologies Özel Sa
  • Housing Demand Forecasting with Machine Learning Methods

Housing Demand Forecasting with Machine Learning Methods

Authors : Şeyma EMEÇ, Duygu TEKİN
Pages : 36-52
Doi:10.18185/erzifbed.1199535
View : 16 | Download : 16
Publication Date : 2022-12-23
Article Type : Research Paper
Abstract :Housing is a place where sustainable urban spaces are produced and where people\`s physical, cultural, environmental, economic, social and psychological needs are evaluated together with their surroundings, rather than just a building where the need for shelter is met. With the acceleration of urbanization, new needs arise, and the first of these is the need for housing. The housing sector has become one of the most dynamic and continuous sectors associated with the increase in the need for housing. The need for adequate and accessible housing comes to the forefront in our country as well as in the world. Understanding and predicting the key features determining housing prices and value is an important consideration for urban planners and housing policymakers. In this study, machine learning and artificial neural network models were used to predict the housing demand of Konya, and their forecasting performances were compared. As a result, it was concluded that ANN is a better alternative for housing demand forecasting in Konya.
Keywords : Forecasting, Housing Demand, Housing Sales, ANN, Machine Learning

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025