- Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi
- Volume:29 Issue:3
- COMPARISON OF DEEP LEARNING TECHNIQUES FOR DETECTION OF DOORS IN INDOOR ENVIRONMENTS
COMPARISON OF DEEP LEARNING TECHNIQUES FOR DETECTION OF DOORS IN INDOOR ENVIRONMENTS
Authors : Burak KALECİ, Kaya TURGUT
Pages : 396-412
Doi:10.31796/ogummf.889095
View : 20 | Download : 11
Publication Date : 2021-12-31
Article Type : Research Paper
Abstract :İç ortamlarda kapıların (açık, yarı açık ve kapalı) tespit edilmesi robotik, bilgisayarlı görü ve mimari gibi çok çeşitli uygulama alanlarında kritik bir görevdir. Kapı tespiti problemine çözüm bulmaya çalışan çalışmalar üç temel kategoriye ayrılabilir: 1) görsel veri ile kapalı kapılar, 2) mesafe verisi ile açık kapılar ve 3) nokta bulutu verisi ile açık, yarı açık ve kapalı kapılar. Kapıları görsel ve mesafe verisi ile bazı belirli şartlar altında başarılı bir şekilde bulan yöntemler önerilmiş olsa da bu çalışmada sahnelerin 3B karakteristiğini anlatma kabiliyeti sebebiyle nokta bulutu verisi kullanılmıştır. Bu çalışmanın iki temel katkısı bulunmaktadır. Birincisi, kapının tipi ve verinin karakteristiğine bağlı olarak genellikle bir kurallar kümesi tanımlayan önceki çalışmalardan farklı olarak PointNet, PointNet++, Dinamik Çizge Erişimsel Sinir Ağları (DGCNN), PointCNN ve Point2Sequence gibi nokta tabanlı derin öğrenme mimarilerinin potansiyelinin keşfedilmesini amaçlanmıştır. İkincisi, GAZEBO benzetim ortamında farklı robot konum ve yönelimleriden elde edilen nokta bulutlarından oluşan OGUROB DOORS veri kümesi oluşturulmuştur. Bu mimarilerin olumlu ve olumsuz yönlerini analiz etmek için kesinlik, duyarlılık ve F1 skor ölçütlerini kullandık. Buna ek olarak, mimarilerin karakteristiklerini ortaya koymak amacıyla bazı görsel sonuçlar verilmiştir. Test sonuçları bütün mimarilerin açık, yarı açık ve kapalı kapıları %98 üzerinde bir başarı ile sınıflandırabildiğini göstermiştir.Keywords : Kapı Bulma, Nokta Bulutu Verisi, Derin Öğrenme, Kapı Veri Kümesi