- Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi
- Volume:30 Issue:3
- DIAGNOSING DISEASES FROM FINGERNAIL IMAGES
DIAGNOSING DISEASES FROM FINGERNAIL IMAGES
Authors : Zuhal CAN, Şahin IŞIK
Pages : 464-470
Doi:10.31796/ogummf.1111749
View : 17 | Download : 16
Publication Date : 2022-12-21
Article Type : Research Paper
Abstract :Bu makale, insanların parmak ve tırnak görünümünün Darier hastalığı, Muehrcke çizgileri, alopesi areata, beau çizgileri, mavimsi tırnaklar ve çomaklaşma gibi çeşitli hastalıkların görüntü işleme ve derin öğrenme teknikleriyle teşhis edilmesine nasıl yardımcı olduğunu araştırıyor. 655 örnekle 17 farklı sınıftan oluşan genel bir veri seti kullandık. Eğitim, doğrulama ve test amaçları için yaygın olarak kullanılan bir kural olan 0.7:0.2:0.1\`e dayanarak veri setini üç kata böldük. Yığın boyutu ve devirleri 32 ve 1000 olarak ayarlayarak Gürültülü-Öğrenci ağırlıklarını kullanarak EfficientNet-B2 modelini performans değerlendirme amacıyla test ettik. Model, tırnak hastalıklarını algılamak için test numunelerinden %72 doğruluk puanı ve %91 AUC puanı elde ediyor. Bu çalışmadaki deneysel bulgular, EfficientNet-B2 modelinin tırnak hastalığı tiplerini çok sayıda sınıf aracılığıyla kategorize edebileceğine dair yeni bir anlayışı doğrulamaktadır.Keywords : EfficientNet, Derin öğrenme, Tahmin Uygulaması