IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Gazi Mühendislik Bilimleri Dergisi
  • Volume:9 Issue:2
  • Classification of Distortions in Agricultural Images Using Convolutional Neural Network

Classification of Distortions in Agricultural Images Using Convolutional Neural Network

Authors : Şafak ALTAY AÇAR
Pages : 174-182
View : 114 | Download : 77
Publication Date : 2023-08-31
Article Type : Research Paper
Abstract :Monitoring products is important for quality and ripening control in an efficient agricultural production process. Monitoring is mostly done with captured images and videos in accordance with the developed technology. The quality of these images and videos directly affects the evaluation. If there is a distortion in image or video, first of all, this distortion must be detected and classified to eliminate. In this study, a method is presented to classify distortions in agricultural images. Eleven different distortions are synthetically added to agricultural images. A convolutional neural network insert ignore into journalissuearticles values(CNN); is designed to classify distorted images. The designed CNN model is tested with four different datasets obtained from various agricultural fields. Also the designed CNN model is compared with previously presented CNN architectures. The results are evaluated and it is seen that the designed CNN model successfully classifies distortions.
Keywords : Bozulma sınıflandırma, tarımsal görüntü, evrişimli sinir ağı

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025