IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Gazi Mühendislik Bilimleri Dergisi
  • Volume:10 Issue:2
  • Development of an Automatic Photovoltaic Cell-Battery Powered Water Irrigation System Incorporated w...

Development of an Automatic Photovoltaic Cell-Battery Powered Water Irrigation System Incorporated with Arduino Software for Agricultural Activities

Authors : Theodore Azemtsop Manfo, Mustafa Ergin Şahin
Pages : 314-328
View : 61 | Download : 109
Publication Date : 2024-08-31
Article Type : Research Paper
Abstract :The study proposes a water irrigation-based solar-powered system for homegrown plants and greenhouse gardens, utilizing solar energy for electricity consumption. The Arduino platform programs sensors and water motors, ensuring optimal operation. A water tank supplies plants with water through a water motor and sensor, while an ATmega328 microprocessor detects plant moisture levels, ensuring an efficient water supply for general plant maintenance. The Arduino controls a water motor, powered by a 3V DC voltage, and a humidity sensor. The sensor sends 3V DC to the motor, allowing water to be pumped. The Arduino\'s trigger pin is set to the 8th, and the sensor signals the Arduino when the soil moisture value decreases. The drip irrigation method is designed to implement the irrigation process by pumping the water in the tank through the pipes using a DC motor. The I-V and P-V curves of solar cells connected serially show an open circuit voltage of 27 V and a short circuit of 190 mA. The P-V curve shows a 3-watt maximum power for 20 V, which can safely charge a 6V, 2 Ah current battery for 4 hours. The Arduino-based autonomous irrigation system saves farmers\' physical work and improves resource efficiency. The irrigation system utilizes a boost converter, a DC-DC switching converter, to step up the input voltage and increase the output voltage, enabling remote monitoring of humidity, water, and energy consumption in flowerpots. This converter is safe for farmers to use for irrigation and agriculture. The converter achieves significant step-up voltage gain with a suitable duty ratio and minimal voltage stress on the power switches. Additionally, energy stored in the connected inductor\'s leaky inductor can be recycled to power the output. The designed drip irrigation is sustainable and environmentally friendly and can be used in agriculture to produce many plants, legumes, starchy foods, and fruits.
Keywords : Irrigation system, DC DC boost converter, MATLAB Simulink, Solar panel, Energy

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025