IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji
  • Volume:12 Issue:1
  • Automatic Detection of Epileptic Seizures from EEG Signals Using Artificial Intelligence Methods

Automatic Detection of Epileptic Seizures from EEG Signals Using Artificial Intelligence Methods

Authors : Ali Öter
Pages : 257-266
Doi:10.29109/gujsc.1416435
View : 105 | Download : 83
Publication Date : 2024-03-25
Article Type : Research Paper
Abstract :Epilepsy is a neurological disorder in which involuntary contractions, sensory abnormalities, and changes occur as a result of abrupt and uncontrolled discharges in the neurons in the brain, which disrupt the systems regulated by the brain. In epilepsy, abnormal electrical impulses from cells in various brain areas are noticed. The accurate interpretation of these electrical impulses is critical in the illness diagnosis. This study aims to use different machine-learning algorithms to diagnose epileptic seizures. The frequency components of EEG data were extracted using parametric approaches. This feature extraction approach was fed into machine learning classification algorithms, including Artificial Neural Network (ANN), Gradient Boosting, and Random Forest. The ANN classifier was shown to have the most significant test performance in this investigation, with roughly 97% accuracy and a 91% F1 score in recognizing epileptic episodes. The Gradient Boosting classifier, on the other hand, performed similarly to the ANN, with 96% accuracy and a 93% F1 score.
Keywords : Epilepsy, EEG, Machine learning, Epileptic seizure, ANN

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025