IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji
  • Volume:12 Issue:4
  • Estimation of Hydroelectric Power Generation Forecasting and Analysis of Climate Factors with Deep L...

Estimation of Hydroelectric Power Generation Forecasting and Analysis of Climate Factors with Deep Learning Methods: A Case Study in Yozgat Province in Turkey

Authors : Feyza Nur Çakıcı, Suleyman Sungur Tezcan, Hıdır Düzkaya
Pages : 819-831
Doi:10.29109/gujsc.1517800
View : 98 | Download : 128
Publication Date : 2024-12-31
Article Type : Research Paper
Abstract :Hydroelectric power is a significant renewable energy source for the development of countries. However, climatic data can impact power generation in hydroelectric power plants. Hydroelectric power forecasting is conducted in this study using Long Short-Term Memory (LSTM), Support Vector Regression (SVR), and hybrid LSTM-SVR models based on climatic data. The dataset consists of climate data from the Yozgat Meteorology Directorate in Turkey from 2007 to 2021 and power data obtained from the Süreyyabey Hydroelectric Power Plant in Yozgat. The correlation coefficient examines the relationship between climate data and monthly hydroelectric power generation. The hyper-parameters of the models are adjusted using the Bayesian Optimization (BO) method. The performance of monthly hydroelectric power prediction models is assessed using metrics such as correlation coefficient (R), root mean square error (RMSE), and mean absolute error (MAE). When trained using 11 and 12 climate parameters, the SVR model exhibits an R-value close to 1, and MAE and RMSE values close to 0 are observed. Additionally, regarding training time, the SVR model achieves accurate predictions with the shortest duration and the least error compared to other models.
Keywords : Hydroelectric generation, climate data, deep learning methods, power forecasting

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025