IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji
  • Cilt: 13 Sayı: 1
  • Optimization of Vortex Tube Design Parameters Using the Taguchi Method

Optimization of Vortex Tube Design Parameters Using the Taguchi Method

Authors : Himmet Erdi Tanürün, Adem Acır
Pages : 245-259
Doi:10.29109/gujsc.1635199
View : 42 | Download : 59
Publication Date : 2025-03-24
Article Type : Research Paper
Abstract :In this study, the optimization of a vortex tube (VT) with a fixed tube diameter and boundary conditions was attempted by determining four different design factors: the value of the conical valve degree (α), the number of nozzles (N), the cold flow exit diameter (Dcold exit), and the nozzle inlet diameter (Dnozzle), to improve the Cooling Coefficient of Performance (COPcooling). For each identified factor, five different levels were assigned, and an L25 orthogonal series was constructed using the Taguchi approach. The 3D-designed cases were subjected to numerical analysis in the ANSYS Fluent software program using the standard k-epsilon turbulence model. The effect levels of the design parameters were determined using the Analysis of variance (ANOVA) approach. Furthermore, after obtaining an empirical equation with COPcooling as the independent variable through Regression analysis, a confirmation test was conducted. The results indicated that the order of influence of the five parameters on COPcooling was N> Dnozzle> Dcold > α, with the N parameter having the strongest impact on the COPcooling in the VT, while the α parameter had the least effect. Additionally, the optimal VT showed a 40.3% improvement in COPcooling, when compared to a VT with initial geometric parameters. It has been identified that using the Taguchi approach for VT geometry optimization significantly enhanced performance
Keywords : Soğutma Performans Katsayısı (COPcooling), Sıcaklık farkı, Varyans Analizi (ANOVA), Hesaplamalı Akışkanlar Dinamiği (CFD), Regresyon analizi

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025