IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi
  • Volume:37 Issue:1
  • Manifold öğrenme yöntemlerinin ileri seviye regresyon yöntemleri ile genelleştirilmesi

Manifold öğrenme yöntemlerinin ileri seviye regresyon yöntemleri ile genelleştirilmesi

Authors : Gülşen TAŞKIN
Pages : 485-496
Doi:10.17341/gazimmfd.704793
View : 23 | Download : 12
Publication Date : 2021-11-10
Article Type : Research Paper
Abstract :Doğrusal olmayan boyut indirgeme yöntemleri, diğer bir adı ile Manifold Öğrenme (MÖ) yöntemleri konusunda son zamanlarda ciddi araştırmalar yapılmaktadır. MÖ yöntemleri, yüksek boyutlu verinin içinde aslında daha az boyutlu bir uzayda doğrusal olmayan bir manifoldun yer aldığı varsayımı üzerine çizge tabanlı bir dönüşüm yapmaktadır. Yüksek boyutlu uzayda yer alan verinin daha az boyutlu uzaya dönüştürülmesi için, veriler arası komşuluk ilişkilerinin korunması hedeflenir. MÖ yöntemlerinin birçoğu, eğitim verisinin tamamını birden alt uzaya dönüştür ve dönüşüme ait herhangi bir dönüşüm matrisi ya da analitik yapısı belli bir gömüleme fonksiyonu üretmezler. Bu sebepten ötürü, sonradan gelebilecek test verilerinin aynı alt uzaya dönüşümleri yapılamaz. Dönüşümün yapılabilmesi için, test verileri, önceki eğitim verileri ile birlikte, ilgili manifold öğrenme yöntemine tekrardan verilerek, öğrenme işlemi yeniden başlatılır. Ancak, her yeni test verisi geldikçe bu durumun tekrarlanması gerekeceğinden, hesaplama maliyeti artacaktır. Bu nedenle, özellikle de sınıflandırma amaçlı çalışmalar için, manifold öğrenme yöntemlerinin, yeni gelecek test verisini alt uzaya dönüştürecek genel çözümlerine gereksinim vardır. Bu çalışmada, literatürde, örneklem dışı veri problemi olarak bilinen bu sorunun üstesinden gelmek için ileri seviye regresyon yöntemleri kullanılmıştır. İlgili manifold öğrenme yöntemi, regresyon yöntemleri ile modellenerek, dönüşüme ait gömüleme fonksiyonları üretilmiş ve geliştirilen modellerin performansları hiperspektral verilerin sınıflandırılması üzerinde ayrıntılı bir biçimde analiz edilmiştir.
Keywords : makine ogrenmesi, boyut azaltma, hiperspektral verilerin sınıflandırması, manifold öğrenme, out of sample problem, regression methods

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025