IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi
  • Volume:37 Issue:4
  • Nesnelerin interneti ortamlarında derin öğrenme ve makine öğrenmesi tabanlı anomali tespiti

Nesnelerin interneti ortamlarında derin öğrenme ve makine öğrenmesi tabanlı anomali tespiti

Authors : Ali GÖKDEMR, Ali ÇALHAN
Pages : 1945-1956
Doi:10.17341/gazimmfd.962375
View : 23 | Download : 31
Publication Date : 2022-02-28
Article Type : Research Paper
Abstract :Internet ve kablosuz haberleşme teknolojilerinin gelişmesi paralelinde IoT alanında yapılan çalışmalar da ilerlemektedir. Sağlık alanında kullanılan IoT sensörleri ile hastaları yakından takip etmek kolaylaşmaktadır. Ayrıca hastalardan toplanan verilerle tedavi sürecine destek sağlayacak istatistiklerin oluşturulması sağlanabilmektedir. Ancak sağlanan imkanların yanında kablosuz iletişim kuran ve internete bağlı olan IoT cihazlarının güvenlik gibi birtakım sorunları da bulunmaktadır. Sağlık çevrelerinde kullanılan IoT’nin farklı katmalarına yönelik yapılan saldırılar neticesinde ciddi sorunlar oluşabilmektedir. Sağlık alanındaki hassas verilerin bu saldırılardan herhangi birine maruz kalmasıyla, verilerin yetkili kullanıcıların erişemeyeceği şekilde değiştirilmesi veya saldırgan tarafından ele geçirilmesi gibi olumsuz sonuçları olabilmektedir. Bu makalede, IoT ağlarında gerçek dünya davranışlarını içeren eksiksiz ve etiketli bir IoT veri kümesi kullanarak MQTT mesajında çoğaltma, müdahale ve değişiklik saldırılarını yapay zekâ teknikleri kullanarak tahmin etmeye çalışılmıştır. Kullanılan veri seti üzerinde SVM algoritması Accuracy %85, F1 %98, Recall %100 olarak; Naive Bayes (NB) algoritması Accuracy %89, F1 %86, Recall %100 olarak; LSTM Loss %6,7, Accuracy %98, F1 %98, Recall %98 olarak iyileştirme yapmıştır. Anormal davranışların tespitinde bir derin öğrenme algoritması olan LSTM algoritması düşük loss ve yüksek doğruluk verisi ile mevcut makine öğrenimi yaklaşımlarından daha iyi performans göstermiştir.
Keywords : IoT, makine öğrenmesi, derin öğrenme, anomali, IoT güvenliği

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025