IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi
  • Volume:37 Issue:4
  • Derin öğrenme kullanılarak nesnelerin interneti tabanlı mobil sürücü yorgunluk tespiti

Derin öğrenme kullanılarak nesnelerin interneti tabanlı mobil sürücü yorgunluk tespiti

Authors : Emre ŞAFAK, İbrahim DOGRU, Necaattin BARIŞÇI, Sinan TOKLU
Pages : 1869-1882
Doi:10.17341/gazimmfd.999527
View : 28 | Download : 12
Publication Date : 2022-02-28
Article Type : Research Paper
Abstract :Sürücü yorgunluk tespiti trafik kazalarını önlemek için önemli bir konudur. Şiddetli trafik kazalarının %40’ı yorgunluk nedeniyle yaşanmaktadır. Sürücü yorgunluk tespiti için çeşitli yöntemler kullanılmaktadır. Sürücü yorgunluk tespiti yöntemlerinden biri EEG ve ECG gibi fiziksel sinyallerin analiz edilmesine dayalı sürücü yorgunluk tespitidir. Bu yöntemde sürücülere doğrudan müdahale gerekmektedir. Bir başka sürücü yorgunluk tespiti yöntemi araç-sürücü etkileşimine dayalı sürücü yorgunluk tespitidir. Bu yöntemde sürücülerin gaza basma şiddeti, direksiyon tutuşu ve frene basma sıklığı gibi davranışlar analiz edilmektedir. Ancak bu davranışlar kişiden kişiye değiştiğinden genelleştirilebilmesi zordur. Yapılan çalışmada kullanılan ve son sürücü yorgunluk tespiti yöntemi görüntülerden sürücü yorgunluk tespitidir. Bu yöntem diğer iki yönteme göre maliyet ve kullanılabilirliğin yanında sürücüye müdahale gerekmediğinden daha avantajlıdır. Kameralar üzerinden gelen görüntüler analiz edilerek yorgunluk tespiti yapılabilmektedir. Görüntülerden sürücü yorgunluk tespiti çalışmaları için klasik görüntü işleme teknikleri ve derin öğrenme algoritmaları kullanılmaktadır. Son sürücü yorgunluk tespiti çalışmaları genellikle derin öğrenme ağı modellerini temel almaktadır. Bunun yanında yaygın kullanımın sağlanabilmesi için geliştirilecek modelin mobil cihazlar üzerinde çalışabilmesi gerekecektir. Yapılan çalışmada mobil cihazlarda sürücü yorgunluk tespiti için Evrişimsel Sinir Ağları kullanılmıştır. Modelin başarı oranını artırabilmek için önceden eğitilmiş model transfer öğrenme tekniğiyle tekrar kullanılmıştır. Geliştirilen model %95,65 başarı oranına ulaşarak daha önceki yapılan çalışmalardan daha iyi sonuç elde etmiştir.
Keywords : Sürücü yorgunluk tespiti, mobil cihazlarda sürücü yorgunluk tespiti, evrişimsel sinir ağları, transfer öğrenme, nesnelerin interneti, derin öğrenme

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025