IAD Index of Academic Documents
  • Home Page
  • About
    • About Izmir Academy Association
    • About IAD Index
    • IAD Team
    • IAD Logos and Links
    • Policies
    • Contact
  • Submit A Journal
  • Submit A Conference
  • Submit Paper/Book
    • Submit a Preprint
    • Submit a Book
  • Contact
  • Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi
  • Volume:40 Issue:1
  • Parçalı hücresel genetik algoritma ile insansız hava aracı performansına dayalı yol planlama

Parçalı hücresel genetik algoritma ile insansız hava aracı performansına dayalı yol planlama

Authors : Ahmet Gezer, Onder Turan, Tolga Baklacıoğlu
Pages : 135-154
Doi:10.17341/gazimmfd.1156817
View : 69 | Download : 105
Publication Date : 2024-08-16
Article Type : Research Paper
Abstract :İnsansız Hava Araçları (İHA), endüstriyel, askerî ve ticari geniş bir uygulama alanına sahiptir. Değişken amaçlar için tasarlanmış farklı yeteneklere ve boyutlara sahip İHA’ların; planlama, yönetme ve koordinasyonunu sağlayabilmek için hatasız çalışan kapsamlı alt sistemlere ihtiyaç vardır. İHA teknolojik gelişiminin önemli bir parçası, yol planlama alanındaki iyileştirmelerden oluşmaktadır. Yol planlamada operasyonel önceliklere göre farklı tercihler yapılabilir, varış noktasına en hızlı şekilde ulaşılması veya hızdan ödün vererek havada kalma süresinin uzatılması istenebilir. Bir İHA’ya ait uçabildiği her hız ve her irtifa için; seyir, tırmanma ve alçalma fazlarına ait yakıt verileri yol planlama algoritmasında kullanılmıştır. Böylece, bir İHA için özelleştirilmiş kinematik kısıtlara uyumlu performans özellikleri temelinde ekonomik ve havada kalma süresini uzatan yollar üretilebilmiştir. Bu tez çalışmasında, Hücresel (cGA) ve Parçalı Hücresel Genetik Algoritma (scGA) önerilmiştir. Sabit başlangıç popülasyonu ve parçalı kromozom yapısına sahip aşırı korumacı yeni algoritma; optimal çözüme yüksek yakınsama hızı elde etmiş, geleneksel bir genetik algoritmaya (GA) kıyasla ortalama 5,2 kat daha yüksek uygunluk değerine sahip yollar üretebilmiştir. scGA’nın GA’ya kıyasla, başlangıç popülasyonuna göre en iyi çözümü 1,9 kat ve genel popülasyonu 5,8 kat daha iyi geliştirdiği gözlenmiştir.
Keywords : Yol Planlama, Yörünge Planlama, Genetik Algoritma, Evrimsel Algoritma, İHA, Hava Aracı Performansı

ORIGINAL ARTICLE URL
VIEW PAPER (PDF)

* There may have been changes in the journal, article,conference, book, preprint etc. informations. Therefore, it would be appropriate to follow the information on the official page of the source. The information here is shared for informational purposes. IAD is not responsible for incorrect or missing information.


Index of Academic Documents
İzmir Academy Association
CopyRight © 2023-2025